

Utilização de isótopos ambientais e isótopos de azoto na avaliação do impacte da agricultura na qualidade da água subterrânea do sistema aquífero dos Gabros de Beja

Eduardo A. PARALTA

Departamento de Hidrogeologia do INETInovação

Paula M. CARREIRA

Investigadora Auxiliar do Instituto Tecnológico e Nuclear (ITN)

Luís F. RIBEIRO

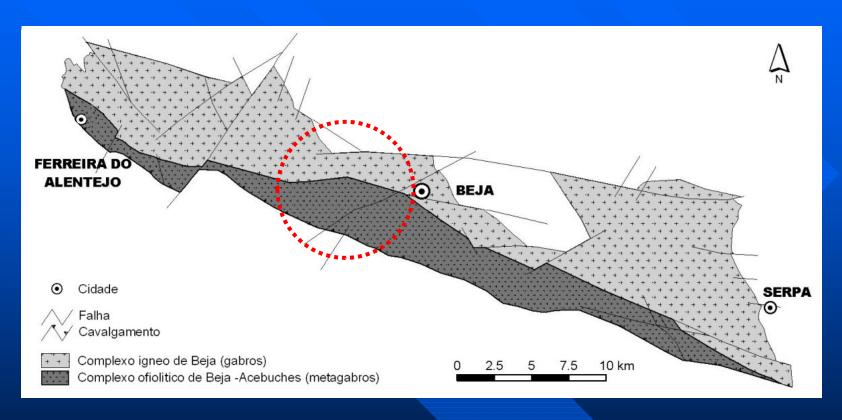
Professor Auxiliar do IST, CVRM-Centro de Geo-sistemas (IST)

Objectivo

Utilização de Isótopos de Azoto na identificação das origens da contaminação, dado que as duas principais origens de poluição por nitratos, fertilização e pecuária, possuem assinaturas isotópicas δ ¹⁵N distintas.

A contribuição relativa das duas principais origens de poluição das águas subterrâneas e superficiais podem ser medidas por balanço de massa.

É essencial integrar as técnicas isotópicas com a caracterização hidrogeoquímica de trabalhos anteriores (Paralta, 2001) de forma a contextualizar os resultados obtidos.



Caso de Estudo

SA dos Gabros de Beja (350 km²), nas vizinhanças da cidade de Beja (Alentejo).

Antecedentes

Teses

- Duque (1997), (2005)
- Paralta (2001)

Estudos/Projectos

- ERHSA (1996 2003)
- POCTI/AGG/47223/2002 (Utilização de isótopos ...)

Artigos

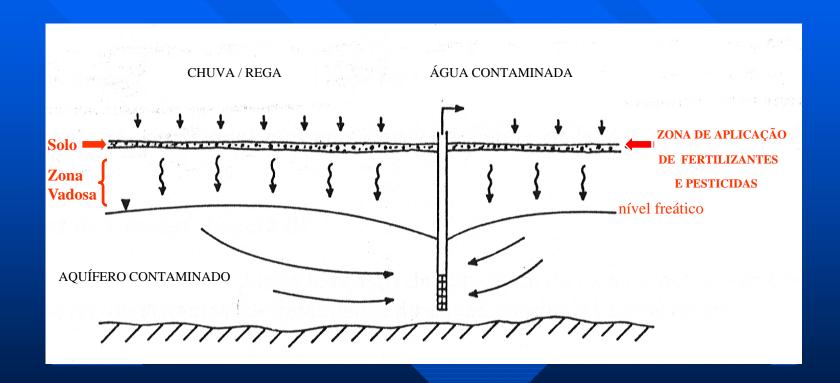
- Paralta & Ribeiro (2000) Análise variográfica e cartografia do risco
- Paralta & Ribeiro (2003) Monitorização e modelação estocástica da poluição por nitratos
- Paralta et al. (2003); Paralta & Oliveira (2005) Recarga aquífera
- Paralta et al (2005) Vulnerabilidade e Redes de Monitorização
- Paralta et al (2006) Isótopos de Azoto (resultados preliminares)

Resultados Práticos

- Redes de Monitorização específicas para a contaminação difusa (CCDR)
- Zona Vulnerável de Beja (Portaria 1100/2004 de 3 Setembro) Min Agricultura

Enquadramento Legislativo / Ambiental

- Zona Vulnerável de Beja (Portaria 1100/2004 de 3 Setembro)
- Directiva dos Nitratos (91/676/CEE)
- Código de Boas Práticas Agrícolas (Directiva 91/2078/CEE)
- Directiva Quadro da Água (2000/60/CE)
- Qualidade da Água para Consumo Humano (DL 243/01 e 80/778/CEE)
- Directiva-filha Águas Subterrâneas



Contaminação Difusa de Origem Agrícola

Enquadramento hidrogeológico

- meio poroso, passando progressivamente a fissurado em profundidade;
 espessura variável, entre 20 a 50 m;
 temperatura média anual é de 16°C;
 precipitação média entre 500-600 mm/ano;
 produtividade média de 6.5 L/s (taxa de insucessos < 20%);
 produtividade média de 80 000 m³ / km²;
 transmissividades mais frequentes entre 50 e 100 m²/dia;
 recarga entre 10 e 20%;
 mineralização relativamente elevada (700 μS/cm < CE < 800 μS/cm);
 fácies bicarbonatada cálcica ou calco-magnesiana;
 dureza alta (carbonato de cálcio)
 qualidade química deficiente devido a concentrações elevadas de nitratos, sulfatos, magnésio, etc.
 qualidade para uso agrícola C₂S₁ e C₂S₁ risco baixo de alcalinização dos solos e risco médio a alto de salinização a maioria das amostras estão sobressaturadas em calcite (CaCO₃)

Avaliação da Vulnerabilidade do SAGB

Paralta et al (2005)

A avaliação da vulnerabilidade para efeitos comparativos baseou-se nos métodos DRASTIC (Aller *et ai* (1987)), GOD (Foster (1987)) e AVI (Van Stempvoort *et ai.* (1993)).

Foi também ensaiado um novo método designado Índice de Susceptibilidade (IS) da autoria de Ribeiro ((2000), (2005))

DRASTIC - classe dominante é 100-119 (baixa)

DRASTIC PESTICIDE - 120-130, (baixa a média)

AVI - entre 1 e 2,7 (risco extremamente elevado)

GOD - entre 0,2 e 0,4 (baixa a média)

IS - classe dominante entre 65% e 75% (vulnerabilidade média-alta)

Agricultura

Aplicavam-se nas culturas de sequeiro entre 200 a 300 kg/ha de adubo de fundo, entre Novembro e Dezembro e mais 200 a 300 kg/ha de adubo de cobertura em Fevereiro/Março (se necessário), totalizando uma carga de Azoto normalmente superior a 100 KgN/ha/ano

As restantes culturas de rotação, como o girassol e o milho, não são normalmente adubadas, embora a utilização de água de rega seja importante, na ordem de 4000-5500 m³/ha/ano

Recentemente, esta situação está a alterar-se devido ao programa de redução de nitratos na sequência da publicação da Portaria 1100/2004 de 3 Setembro que contempla a Zona Vulnerável de Beja.

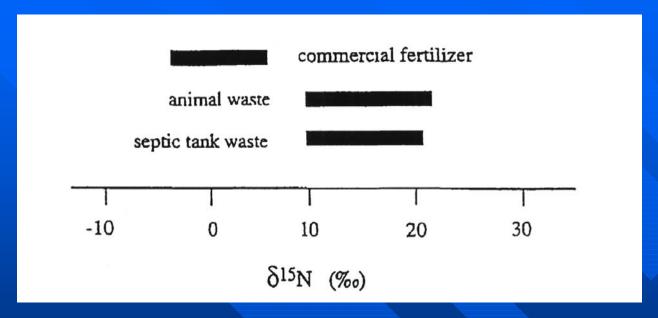
Técnicas Isotópicas

- Análises isotópicas de δ^{18} O e δ^{2} H Instituto Tecnológico e Nuclear (ITN-Portugal)
- Análises a δ¹⁵N no Instituto de Ciência Aplicada e Tecnologia (ICAT-Portugal).
- Equipamento: espectrómetro de massa.

Composição dos meios naturais em δ¹⁵N varia entre -20 and +30 °/oo

Origem natural do Azoto (N) é a atmosfera (δ^{15} N=0 °/00).

Fertilizantes (0 a 3 °/oo δ¹⁵N)


Pecuária (+10 a +25 °/00 δ^{15} N)

Intervalo de variação do δ¹⁵N para as principais origens de nitrato nas águas subterrâneas (Wassenaar (1995)

Factores que controlam os teores de δ^{15} N dos compostos de azoto:

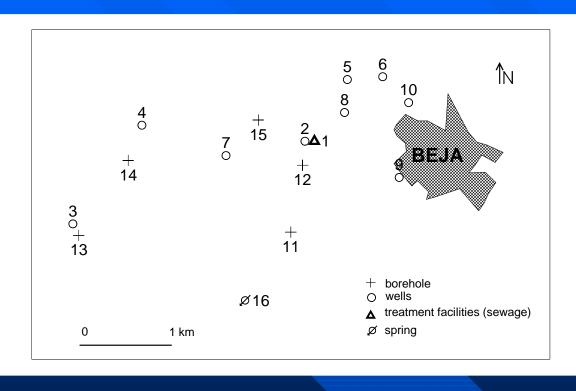
- (1) variações nos valores de entrada (fontes) e de saída (sumidouros) de compostos de $\delta^{15}N$ no meio subterrâneo
- (2) transformações químicas, físicas e biológicas dos materiais no solo e nos aquíferos que aumentam ou reduzem determinados compostos.

A análise conjunta de δ¹⁸O e δ¹⁵N

Os nitratos com origem em águas com valores de δ^{18} O no intervalo de -25 a -5 °/oo deverão apresentar δ^{18} O no intervalo de -9 a +4 °/oo.

A composição media do δ¹⁵N do nitrato com origem no azoto atmosférico situa-se em redor de 0 º/oo

O nitrato natural produzido no solo e o nitrato proveniente dos fertilizantes apresentam $\delta^{15}N$ semelhantes, pelo que é necessário analisar conjuntamente o $\delta^{18}O$ para individualizar a origem e o ciclo do poluente.



Amostragem

Distribuição dos pontos de amostragem na área de estudo.

Resultados

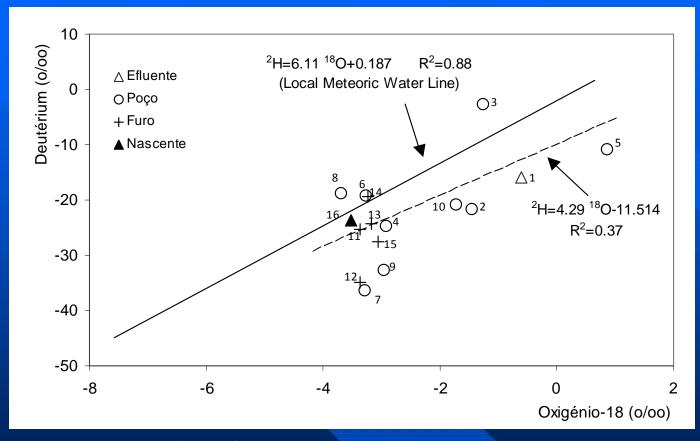
Ref.	Ponto de Água	pH *	CE *	Temp*	Ca	Na	Mg	K	HCO ₃	SO ₄	CI	N-NO ₃	NO ₃	SiO ₂
			(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
1	Efluente	7.48	2370	9.5	92.00	238.0	35.00	19.90	428.0	87.99	509.0	0.29	1.28	18.80
2	Poço	8.07	1295	13.7	101.00	51.0	60.00	0.32	267.5	69.48	251.0	8.80	38.97	28.85
3	Poço	8.55	618	11.4	28.20	37.5	33.25	0.06	223.0	82.30	45.0	8.53	37.78	30.28
4	Poço	7.97	726	14.3	76.00	38.0	18.75	0.08	241.5	83.66	38.0	13.94	61.73	27.93
5	Poço	8.24	796	9.1	63.00	41.0	35.50	1.19	275.0	86.85	88.0	4.27	18.91	28.78
6	Poço	7.63	695	15.4	87.50	12.0	23.25	0.14	226.0	44.42	37.0	14.97	66.30	34.29
7	Poço	7.46	723	12.6	77.75	30.5	24.25	0.05	283.0	78.55	32.0	11.94	52.88	34.41
8	Poço	7.40	1054	17.2	100.00	37.5	43.75	0.12	296.0	79.26	119.0	13.11	58.06	37.58
9	Poço	7.25	1228	18.5	139.00	34.0	45.75	0.54	329.5	76.98	167.0	12.14	53.76	41.22
10	Poço	7.62	371	10.6	45.00	14.0	10.25	3.12	210.0	7.19	27.0	0.60	2.66	22.94
11	Furo	7.52	672	12.5	70.75	23.0	26.50	0.20	228.5	81.59	43.0	9.25	40.96	30.37
12	Furo	7.51	615	19.3	61.25	22.5	24.00	0.07	267.5	43.14	39.0	9.11	40.34	30.09
13	Furo	7.23	796	14.4	74.25	32.5	31.75	2.62	322.0	73.00	49.0	10.37	45.92	29.08
14	Furo	7.32	780	17.0	76.50	43.0	24.00	0.08	264.5	79.07	50.0	12.67	56.11	34.50
15	Furo	7.53	792	17.1	73.75	29.0	31.50	0.06	239.0	76.03	82.0	9.41	41.67	34.15
16	Nascente	7.53	675	18.5	52.50	23.0	41.50	0.06	288.0	37.03	37.0	9.37	41.50	38.07

^{*} Parâmetro de campo

Composição físico-química das amostras de água (Dezembro 2004)

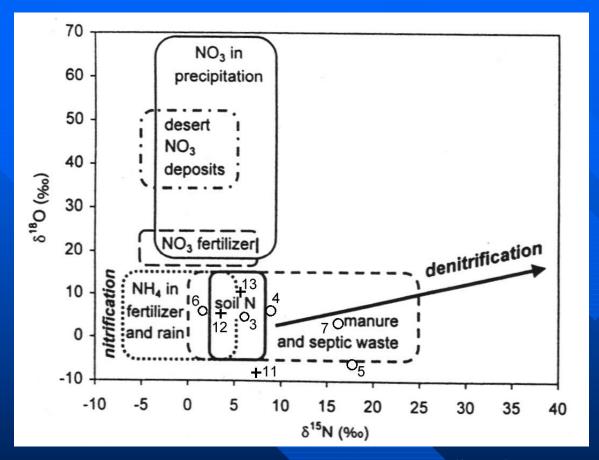
- águas mediamente mineralizadas com condutividade eléctrica (CE) entre 300 e
- 1 300 µS/cm fácies calco-magnesiana
- nitratos entre 2 e 66 mgNO₃/L, com valores mais frequentes entre 35 e 60 mgNO₃/L
- - efluente da ETAR (amostra nº 1) apresenta a mineralização mais elevada (CE=2370 μ S/cm) e o mais baixo teor em NO $_3$ e N-NO $_3$ (inferior a 2 mg/L)

		Dezen	nbro 2004	Maio 2006				
Referência	NO ₃	$\delta^{15}N$ (NO ₃)	δ ¹⁸ O (H ₂ O)	$\delta^2 H (H_2 O)$	NO ₃	$\delta^{15}N$ (NO ₃)	δ ¹⁸ O (NO ₃)	
	(mg/L)	(°/ ₀₀)	(°/ ₀₀)	(°/ ₀₀)	(mg/L)	(°/ ₀₀)	(°/00)	
1- Efluente	1.28	16.14	-0.60	-15.90				
2- Poço	38.97	18.22	-1.46	-21.60				
3- Poço	37.78	12.42	-1.26	-2.60	48.37	6.88	4.29	
4- Poço	61.73		-2.93	-24.60	113.00	8.13	5.35	
5- Poço	18.91	26.17	0.86	-10.80	144.20	17.71	-4.71	
6- Poço	66.30	3.69	-3.27	-19.20	110.60	1.67	5.35	
7- Poço	52.88	3.07	-3.29	-36.30	34.50	16.41	2.63	
8- Poço	58.06	13.38	-3.69	-18.70				
9- Poço	53.76	13.63	-2.96	-32.60				
10- Poço	2.66	11.95	-1.73	-20.90				
11- Furo	40.96	8.12	-3.37	-25.30	58.40	7.66	-8.16	
12- Furo	40.34	26.12	-3.37	-34.80	77.70	3.06	4.79	
13- Furo	45.92		-3.17	-24.20	49.60	5.63	9.95	
14- Furo	56.11	3.50	-3.24	-19.30				
15- Furo	41.67		-3.05	-27.60				
16- Nascente	41.50		-3.53	-23.60	52.70		7.83	


- Os isótopos de azoto δ¹5N para as águas subterrâneas situam-se entre +3 º/oo e +26 º/oo
- Para o efluente obtém-se δ¹⁵N = +16.14 º/oo.
- Os resultados obtidos abrangem os valores admitidos na bibliografía para o $\delta^{15}N$ de origem animal e efluentes domésticos
 - Os isótopos de δ^{18} O situam-se entre -3.7 º/oo a + 0.86 º/oo para as águas subterrâneas e -0.6 º/oo para o efluente.

- Recta de água meteórica (LMWL – local meteoric water line) estimada com base na composição isotópica da água da chuva da estação meteorológica de Beja (ITN, amostras mensais de 1988 - 1991).

A equação da recta é $\delta^{2}H = 6.11 \delta^{18}O + 0.187$.


- A nascente localiza-se relativamente próxima da LMWL, bem como a maioria das amostras de furos.
- As amostras de poços e do efluente apresentam desvio da recta, provavelmente relacionada com fraccionamento isotópico devido a processos de evaporação.

Projecção das amostras no diagrama dos intervalos padrão de δ¹⁸O e δ¹⁵N do nitrato em função da origem (adaptado Kendal & McDonnell, 1998).

Canchisões de técnicas de análise isotópica permite identificar as diferentes origens da contaminação antropogénica dos recursos hídricos (determinações de δ^{18} O and δ^{15} N em nitratos e outros)

- De acordo com o modelo conceptual da poluição difusa na região rural de Beja e da experiência de campo de anos anteriores admite-se que a principal origem dos nitratos na água subterrânea será a fertilização química
- Os resultados não são conclusivos relativamente à origem agrícola do N- nitrato nas águas subterrâneas

... mistura de fontes pontuais e difusas em zonas de escoamento pouco profundo bem como os processos de desnitrificação dificultam a determinação das origens

Agradecimentos

O primeiro autor foi bolseiro de doutoramento da Fundação para a Ciência e a Tecnologia do MCES (2003-2007) e desenvolve a sua investigação no CVRM/Instituto Superior Técnico e no INETInovação/Departamento de Hidrogeologia.

Os trabalhos têm sido apoiados pelo projecto POCTI/AGG/47223/2002 "Utilização de Isótopos de Azoto na Avaliação do Impacte da Agricultura na Qualidade da Água Subterrânea".

Às entidades envolvidas manifesto o meu sincero agradecimento. *Mais informações* ...

www.ineti.pt / Departamentos / Hidrogeologia ...

