Volume 18, Issue 1 - March 2018
Download (3 080KB, PDF) |
- Abstract / Resumo
- References / Bibliografia
- Citations / Citações
Revista de Gestão Costeira Integrada
Volume 18, Issue 1, March 2018, Pages 49-69
DOI: 10.5894/rgci-n120
* Submission: 8 JUN 2017; Peer review: 2 AGO 2017; Revised: 2 JUN 2018; Accepted: 2 JUN 2018; Available on-line: 2 JUL 2018
Desenvolvimento Experimental de uma Estratégia de Controle Morfodinâmico de Perfil de Praia Arenosa Dominada por Ondas
Experimental Development of a Morphodynamic Profile Control Strategy for Wave-Dominated Beaches
Douglas Duarte Nemes1, Marcos Nicolás Gallo2, Francisco Pedocchi3
1 Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa em Engenharia COPPE, Universidade Federal do Rio de Janeiro, CP 68508, bloco I, sala 100, Rio de Janeiro, douglasnemes@oceanica.ufrj.br
2 Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa em Engenharia COPPE, Universidade Federal do Rio de Janeiro, CP 68508, bloco I, sala 100, Rio de Janeiro, franciscofabian@oceanica.ufrj.br
3 Universidad de la República, Facultad de Ingeniería, Instituto de Mecánica de los Fluidos e Ingenería Ambiental. Montevideo, Uruguai; kiko@fing.edu.uy
RESUMO
As estratégias de engenharia costeira para adaptação da população e suas atividades socioeconômicas ao redor dos oceanos é um tema que está em toda a história da civilização. Um dos desafios atuais é conter os processos erosivos no litoral, onde muitas cidades estão sentindo os efeitos do recuo da linha de costa. Para isto, as necessidades da sociedade moderna devem ser incluídas nos projetos de engenharia costeira, os quais devem ser desenvolvidos tendo em conta os conceitos naturais da dinâmica de cada sistema. O objetivo do presente estudo é demonstrar que um perfil arenoso, similar ao de praias do tipo intermediárias e que são vulneráveis ao processo erosivo, pode ser adaptado para se tornar um perfil predominantemente dissipativo, através da presença de um banco arenoso distal capaz de induzir a rebentação das ondas. No desenvolvimento desta estratégia foram utilizados os conceitos da morfodinâmica transversal de praias arenosas e o de estruturas costeiras submersas porosas. Para o efeito, uma estrutura porosa foi posicionada no antinó da oscilação hidrodinâmica longitudinal do sistema criado num canal de ondas. Com isso foi possível acumular sedimentos e ativar a formação de um banco arenoso distal. Esta forma morfológica passou a induzir a rebentação de ondas. Por sua vez, foi gerada uma larga e turbulenta zona de rebentação que passou a dissipar mais energia do que a ‘natural’. Um sistema morfodinâmico dissipativo foi criado durante os testes com ondas de alta e baixa energia. A estratégia de utilizar uma estrutura submersa com alta porosidade tem a vantagem de se integrar no processo morfodinâmico natural. Além disso, é uma estrutura leve em relação às tradicionais soluções de engenharia costeira, e que pode ser economicamente mais atrativa.
Palavras-chave: Engenharia Costeira; Estruturas Submersas Porosas; Bancos de Areia.
ABSTRACT
Coastal engineering strategies to adapt population and their socioeconomic activities around the oceans is a theme that is constantly present in the history of civilization. One of the main current challenges is to contain erosive processes on the shore, where many cities are feeling the effects of the coastline retreat. For this reason, the needs of modern society must be included in coastal engineering projects, which should be developed taking into account the natural concepts of the dynamics of each system. This is the motivation of the present study, which aims to demonstrate that a sandy profile that is vulnerable to erosive processes can be managed to become a predominantly dissipative profile, by introducing a sandy bank able to induce wave breaking. For this strategy, concepts of transverse morphodynamics of sandy beaches and of submerged porous coastal structures were used. When the structure was placed in the location of the anti-node of the system`s longitudinal hydrodynamic oscillation within a wave channel, it was possible to control the transport of sediments. The strategy was to accumulate the sediments inside the porous structure to replicate the shape of a distal sandy bank, which started to induce waves’ breaking. In turn, a wide and turbulent breaking zone was generated able to dissipate more energy than the ‘natural’ breaking zone. A dissipative morphodynamic system was predominant during the high and low wave energy scenarios. The strategy of using a submersible structure with high porosity has the advantage of being integrated in the natural morphodynamic processes. In addition, this is a lightweight structure compared to the traditional coastal engineering solutions, and it can be economically more attractive.
Keywords: Coastal Engineering; Submerged Porous Breakwater; Sandbars.
Ahrens, J. P. (1987) – Characteristics of Reef Break Waters, U.S. Army Corps of Engineers Coastal Engineering Research Center, TR 87-17, Vicksburg, MS, 66p. Available on-line at http://oai.dtic.mil/oai/
oai?verb=getRecord&metadataPrefix=html&identifier=ADA189036
Ahrens, J. P.; Fulford, E. T. (1988) – Wave Energy Dissipation by Reef Breakwaters. Oceans ‘88, Marine Technology Society, Washington, pp.1244-1249. Available on-line at http://ieeexplore.ieee.org/
stamp/stamp.jsp?arnumber=794965
Akbari, H.; Namin, M. M. (2013) – Moving particle method for modeling wave interaction with porous structures. Coastal Engineering, 74:59–73. Available on-line at http://doi.org/10.1016/j.coastaleng.2012.12.002
Alsina, J. M.; Cáceres, I.; Brocchini, M.; Baldock, T. E. (2012) – An experimental study on sediment transport and bed evolution under different swash zone morphological conditions. Coastal Engineering, 68:31–43. http://doi.org/10.1016/ j.coastaleng.2012.04.008
Beji, S.; Battjes, J. A. (1993) – Experimental Investigation of Wave Propagation Over a Bar. Coastal Engineering, 19:151-162. https://doi.org/0378-3839/93/$06.00
Benedet, L.; Dobrochinski, J. P. F; Walstra, D. J. R.; Klein, A. H. F.; Ranasinghe, R. A. (2016) – Morphological modeling study to compare different methods of wave climate schematization and evaluate strategies to reduce erosion losses from a beach nourishment Project. Coastal Engineering, 112:69–86. Available on-line at http://dx.doi.org/10.1016/j.coastaleng.2016.02.005
Black, K.; Mead, S. (2009) – Design of Surfing Reefs. Reef Journal, 1:177-191. Available on-line at http://thereefjournal.com/files/
14._Black_and_Mead.pdf
Borrero, J. C., NELSEN, C. (2003) - Results of a Comprehensive Monitoring Program at Pratte’s Reef,, Artificial Surfing Reefs, pp.83–98. Available on-line at https://journals.tdl.org/icce/index.php/icce/article/view/1172
Bowen, A. J. (1980) – Simple Models of Nearshore Sedimentation. In: McCann, S. B. (ed.), The Coastline of Canada, Geological Survey of Canada, 80:1–11. ISBN 0-660-1071 0-4.
C.E.M. (2006) – Coastal Engineering for Environmental Enhancement. In: Coastal Engineering Manual. Coastal Engineering Research Center, US Army Corps of Engineers US Government Printing Office, Washington, DC, 1720p. Available on-line at http://www.usace.army.mil/inet/usace-docs/eng-manuals/cecw.htm
Cheng, J.; Wang, P.; Smith, E. R. (2016) – Hydrodynamic Conditions Associated with an Onshore Migrating and Stable Sandbar. Journal of Coastal Research, 32(1):153–163.http://dx.doi.org/10.2112/
JCOASTRES-D-14-00174.1
Dean, R. G.; Chen, R.; Browder, A. E. (1997) – Full scale monitoring study of a submerged breakwater, Palm Beach, Florida, USA. Coastal Engineering, 29:291-315. https://doi.org/10.1016/
S0378-3839(96)00028-2
Drake, T. G.; Calantoni, J. (2001) – Discrete Particle Model for Sheet Flow Sediment Transport in the Nearshore. Journal of Geophysical Research, 106:19859-19868.
Grasso, F.; Michallet, H.; Barthélemy, E.; Certain, R. (2009) – Physical modeling of intermediate cross-shore beach morphology: transients and equilibrium states. Journal of Geophysical Research Atmospheres, 114(C09001). https://doi.org/10.1029/2009JC005308
Gourlay, M. R. (1980) – Beaches: Profiles, Processes and Permeability. In: Proceedings 17th Coastal Engineering Conference, Sydney, p.1320-1339. ISBN: 978-0-7844-7959-9.
Heller, V. (2011) – Scale Effects in Physical Hydraulic Engineering Models. Journal of Hydraulic Research, 49(3):293–306. http://dx.doi.org/10.1080/
00221686.2011.578914
Hoefel, F. G.; Elgar, S. (2003) – Wave-Induced sediment transport and sandbar migration. Science, 299:1885-1887. Available on-line at http://falk.ucsd.edu/reading/hoefel_science03.pdf
Jacobsen, N. G.; Fredsoe, J. (2014) - Formation and Development of a Breaker Bar Under Regular Waves. Part 2: Sediment Transport and Morphology. Coastal Engineering, 88:55–68. http://dx.doi.org/
10.1016/j.coastaleng.2013.12.008
Jackson, L. A., Tomlinson, R. B., Mcgrath, J. E., Turner, I. (2003) – Monitoring of a Multifunctional Submerged Geotextile Reef Breakwater, Gold Coast, Australia. In: Proceedings 28th International Conference of Coastal Engineering, Cardiff, pp. 1923-1935. https://doi.org/10.1142/
9789812791306_0162
Kamphuis, J. W., Nairn, R. B. (1984) – Scale Effects in Large Coastal Mobile Bed Models. Proceedings 19th International Conference on Coastal Engineering, Houston, 2322--2338. https://doi.org/10.1016/
0378-3839(86)90036-0
Kiran, A. S., Ravichandran, V., Sivakholundu, K. M. (2015) – Stability Analysis and Design of Offshore Submerged Breakwater Constructed Using Sand Filled Geosynthetic Tubes. In: 8th Proceedings International Conference on Asian and Pacific Coasts, Procedia Engineering, 116:310–319. https://doi.org/10.1016/j.proeng.2015.08.295
Kobayashi, N.; Meigs, L. E.; Ota, T.; Melby, J. A. (2007) – Irregular Breaking Wave Transmission over Submerged Porous Breakwater. Journal of Waterway, Port, Coastal, and Ocean Engineering, 133:104-116. Available on-line at http://ascelibrary. https://doi.org/doi/full/
10.1061/(ASCE)0733-950X(2007)133%3A2(104)
Longuet-Higgins, M. S.; Stewart, R. W. (1964) – Radiation stresses in water waves; a physical discussion, with applications. Deep-Sea Research, 11:529-562. https://doi.org/10.1016/0011-7471(64)90001-4
Losada, I. J., Silva, R., Imada, M. A. (1996) – 3-D non-breaking regular wave interaction with submerged breakwaters. Coastal Engineering, 28:229-248. https://doi.org/10.1016/0378-3839(96)00019-1
Medeiros, N.; Dias, M. S.; Neto, A. A.; Muehe, D. (2014) – Mapeamento Acústico de Areias Submersas para Recuperação de Praias do Rio de Janeiro, Brasil. Revista de Gestão Costeira Integrada, 14:149-158. https://doi.org/10.5894/rgci429
Metallinos, A. S.; Repousis, E. G.; Memos, C. D. (2016) - Wave Propagation Over a Submerged Porous Breakwater with Steep Slopes. Ocean Engineering, 111:424–438.http://doi.org/10.1016/
j.oceaneng.2015.11.015
Mosquera, R.; pedocchi, F. (2013) – Decomposition of Incident and Reflected Surface Waves Using an Ultrasonic Velocity Profiler. Coastal Engineering, 71:52–59. http://doi.org/10.1016/j.coastaleng.2012.08.002
Motta, V. F. (1985) – Modelos Costeiros de Fundo Móvel. Revista Brasileira de Fundo Móvel, Rio de Janeiro, 238p.
Muehe, D. (2010) – Brazilian Coastal Vulnerability to Climate Change. Pan-American Journal of Aqua Science, 5(2):173–183. Available on-line at http://www.panamjas.org/pdf_artigos/PANAMJAS_5(2)_173-183.pdf
Nemes, D. D. (2016) – Variabilidade Morfodinâmica de uma Praia Intermediária com a Presença de um Afloramento Rochoso Submerso. 244p. Tese de Doutorado, Universidade Federal do Rio de Janeiro, RJ, Brasil. Unpublished. https://doi.org/10.13140/RG.2.2.27454.08006.
Neves, C. F., Muehe, D. (2008) – Vulnerabilidade, impactos e adaptação a mudanças do clima: a zona costeira, In: Parcerias Estratégicas, n.27, Brasília, Centro de Gestão e Estudos Estratégicos: Ministério da Ciência e Tecnologia, pp.217-295. Available on-line at http://seer.cgee.org.br/
index.php/parcerias_estrategicas/article/view/325
Neves, L.; Moreira, A.; Taveira-Pinto, F.; Lopes, M. L.; Veloso-Gomes, F. (2015) – Performance of submerged nearshore sand-filled geosystems for coastal protection. Coastal Engineering, 95:147–159. http://doi.org/10.1016/j.coastaleng.2014.10.005.
Nielsen, P., 1992, “Coastal Bottom Boundary Layers and Sediment Transport”, Advanced Series on Ocean Engineering, v.4. World Scientific, Singapore.
Nielsen, P. (2006) – Sheet Flow Sediment Transport Under Waves With Acceleration Skewness and Boundary Layer Streaming. Coastal Engineering, 53(9):749-758. http://doi.org/10.1016/
j.coastaleng.2006.03.006.
Nishihata, T.; Tajima, Y.; Sato, S. (2012) – Numerical Analysis of Wave and Nearshore Current Fields Around Low-Crested Permeable Detached Breakwaters. In: Proccedings of 33th Conference on Coastal Engineering, Santander, pp.1-10. Available on-line at https://journals.tdl.org/
icce/index.php/icce/article/view/6801.
Noda, E. K. (1978) – Scale Relations for Equilibrium Profiles. In: Proceedings 16th Coastal Engineering Conference, ASCE, 2:1531-1541. Available on-line at https://icce-ojs-tamu.tdl.org/icce/index.php/icce/
article/view/3353
Paul, M. J.; Kamphuis, J. W.; Brebner, A. (1972) – Similarity of Equilibrium Beach Profiles. Coastal Engineering, (13):1217-1236. Available on-line at https://doi.org/10.9753/icce.v13.%25p.
Pilarczyk, K. W. (2003) – Design of Low-Crested (Submerged) Structures – An Overview. In: Proccedings 6th International Conference on Coastal and Port Engineering in Developing Countries, Colombo, 19p. Available on-line at http://www.artificialreefs.org/ScientificReports/
DesignLowCrestedStructures.pdf
Pilkey, O. H.; Neal, W. J.;Kelley, J. T.; Cooper, J. A. G. (2011) - Beaches of The World. In: Pilkey, O. H.; Neal, W. J.;Kelley, J. T.; Cooper, J. A. G. (eds.). The World’s Beaches: A Global Guide to the Science of the Shoreline, University of California Press, Berkeley, California: 302p. ISBN-13: 978-0520268722
Ranasinghe, R.; Turner, I.; Symonds, G. (2006) – Shoreline Response to Submerged Structures: a Numerical and Physical Modeling. Coastal Engineering Journal, 53:589–611. https://doi.org/10.1016/
j.coastaleng.2005.12.004
Ranieri, G. (2007) – The Surf Zone Distortion of Beach Profiles in Small-Scale Coastal Models. Journal of Hydraulic Research, 45(2): 261–269. http://dx.doi.org/10.1080/00221686.2007.9521761
Van Rijn, L. C. (1993) – Fluid Velocity and Bed Shear Stress. In: Rijn, L. C. V. (ed.), Principles of sediment transport in rivers-estuaries and coastal seas, pp.2.1-2.48. Aqua Publications, Amsterdam, Netherlands. ISBN: 90-800356-2-9.
Van Rijn, L. C. (2011) – Coastal Erosion and Control. Ocean & Coastal Management, 54:867-887. http://doi.org/10.1016/
j.ocecoaman.2011.05.004.
Van Rijn, L. C., Tonnon, P. K., Sánchez-Arcilla, A., Cáceres, I., Grüne, J. (2011) – Scaling laws for beach and dune erosion processes. Coastal Engineering, 58:623–636, https://doi.org/10.1016/
j.coastaleng.2011.01.008
Short, A. D. (1999) – Beaches. In.: Short, A. D. (Ed.), Handbook of Beach and Shoreface Morphodynamics, p.3-17, 1999. ISBN: 0 471 96570 7
Short, A. D.; Klein, A. H. F. (2016) – Brazilian Beach Systems: Introduction. In: Short, A. D., Klein, A. H. F. (eds.). Brazilian Beach System, Coastal Research Library, 17:1-35. ISBN 978-3-319-30392-5.
Smith, E. R.; Wang, P.; Zhang, J. (2003) – Evaluation of the CERC Formula Using Large-Scale Model Data. Coastal and Hydraulics Laboratory - Engineer Research and Development Center Waterways Experiment Station - Vicksburg, Mississippi, 14p. Available on-line at http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=
1238&context=gly_facpub
Spielmann, K.; Certain, R.; Astruc, D.; Barusseau, J. P. (2011) – Analysis of submerged bar nourishment strategies in a wave-dominated environment using a 2DV process-based model. Coastal Engineering, 58:767–778. http://doi.org/10.1016/j.coastaleng.2011.03.015.
Stauble, D. K.; Tabar, J. R. (2003) – The Use of Submerged Narrow-Crested Breakwaters for Shoreline Erosion Control. Journal of Coastal Research, 19: 684-722. Available on-line at https://www.jstor.org/
stable/4299207?seq=1#page_scan_tab_contents
Sumer, B. M.; Whitehouse, R. J. S.; Tørum, A. (2001) – Scour Around Coastal Structures: a Summary of Recent Research. Coastal Engineering, 44(2):153– 190. http://doi.org/10.1016/S0378-3839(01)00024-2.
Sumer, M. B. E.; Fredsoe, J. (2012) – Scour around breakwaters. In: The Mechanics of Scour in the Marine Environmet. World Science, 17, Singapore. ISBN: 978-981-02-4930-4.
Ting, C. L.; Lin, M. C.; Cheng, C. Y. (2004) – Porosity Effects on Non-Breaking Surface Waves Over Permeable Submerged Breakwaters. Coastal Engineering, 50:213–224. http://doi.org/ 10.1016/
j.coastaleng.2003.10.003
Ting, F. C. K.; Kirby, J. T. (1994) – Observation of Undertow and Turbulence in a Laboratory Surf Zone. Coastal Engineering, 24:51-80. https://doi.org/10.1016/0378-3839(94)90026-4.
Ting, F. C. K., Kirby, J. T. (1995) – Dynamics of Surf-Zone Turbulence in a Strong Plunging Breaker. Coastal Engineering, 24:177-204. https://doi.org/10.1016/0378-3839(94)00036-W
Turner, I. L., Leyden, V. M., Cox, R. J. Jackson, L. A., Mcgrath, J. E. (2001) – Physical Model Study of the Gold Coast Artificial Reef. Journal of Coastal Research, Special Issue, 29:131-146. Available on-line at https://www.jstor.org/stable/25736211?seq=1#page_scan_tab_contents
Wang, P.; Kraus, N. C. (2005) – Beach Profile Equilibrium and Patterns of Wave Decay and Energy Dissipation across the Surf Zone Elucidated in a Large-Scale Laboratory Experiment. Journal of Coastal Research, 21:522–534. http://dx.doi.org/10.2112/03-003.1
Wang, P.; Ebersole, B. A.; Smith, E. R.; Johnson, B. D. (2002) – Temporal and spatial variations of surf-zone currents and suspended sediment concentration. Coastal Engineering , 46:175–211. http://dx.doi.org/10.1016/S0378-3839(02)00091-1.
Wright, L. D.; Guza, R. T.; Short, A. D. (1982) – Dynamics of a High-Energy Dissipative Surf Zone. Marine Geology, 45:41-62. https://doi.org/10.1016/0025-3227(82)90179-7.
Wright, T. D.; Short, A. D. (1984) – Morfodynamics Variability of Surf Zones and Beach: A Syntheisis. Marine Geology, 56:93–118. https://doi.org/10.1016/0025-3227(84)90008-2.
Wu, Y. T.; Hsiao, S. C. (2013) – Propagation of Solitary Waves Over a Submerged Permeable Breakwater. Coastal Engineering, 81:1–18. http://doi.org/10.1016/j.coastaleng.2013.06.005.
Wu, Y. T.; Yeh, C. L.; Hsiao, S. C. (2014) – Three-dimensional numerical simulation on the interaction of solitary waves and porous breakwaters. Coastal Engineering, 85:12–29. http://doi.org/10.1016/
j.coastaleng.2013.12.003.
Yang, S. L. (2011) – 50,000 dams later: Erosion of the Yangtze River and its delta. Global and Planetary Change, 75:14-20. http://doi.org/
10.1016/j.gloplacha.2010.09.006.
em construção