Revista de Gestão Costeira Integrada
Volume 20, Issue 4, December 2020, Pages 265-281
DOI: 10.5894/rgci-n338
* Submission: 9 JAN 2020; Peer Review: 28 FEB 2020; Revised: 27 SEP 2020; Accepted: 27 SEP 2020; Available on-line: 2 FEB 2021
Assessment impact of the Damietta harbour (Egypt) and its deep navigation channel on adjacent shorelines
Mohsen M. Ezzeldin1, Osami S. Rageh2, Mahmoud E. Saad3 @
@ Corresponding author: miskver@yahoo.com
1 - Irrigation and Hydraulics Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt. Email: mohsen-ezzeldin@hotmail.com
2 - Irrigation and Hydraulics Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt. Email: drosamirageh@yahoo.com
3 - Irrigation and Hydraulics Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt. Corresponding author: miskver@yahoo.com
ABSTRACT: Deep navigation channels have a great impact on adjacent beaches and crucial economic effects because of periodic dredging operations. The navigation channel of the Damietta harbour is considered a clear example of the sedimentation problem and deeply affects the Northeastern shoreline of the Nile Delta in Egypt. The aim of the present study is to monitor shoreline using remote sensing techniques to evaluate the effect of Damietta harbour and its navigation channel on the shoreline for the last 45 years. Also, the selected period was divided into two periods to illustrate the effect of man-made interventions on the shoreline. Shorelines were extracted from satellite images and then the Digital Shoreline Analysis System (DSAS) was used to estimate accurate rates of shoreline changes and predict future shorelines evolution of 2030, 2040, 2050 and 2060. The Damietta harbour created an accretion area in the western side with an average rate of 2.13 m yr-1. On the contrary, the shoreline in the eastern side of the harbour retreated by 92 m on average over the last 45 years. So, it is considered one of the main hazard areas along the Northeastern shoreline of the Nile Delta that needs a sustainable solution. Moreover, a detached breakwaters system is predicted to provide shore stabilization at the eastern side as the implemented one at Ras El-Bar beach. Predicted shoreline evolution of 2060 shows a significant retreat of 280.0 m on average.
Keywords: Navigation Channel; Shoreline; Damietta Harbour; Remote Sensing; DSAS.
RESUMO: Os canais de navegação profundos têm um grande impacto nas praias adjacentes e efeitos econômicos cruciais devido às operações de dragagem periódicas. O canal de navegação do porto de Damietta é considerado um exemplo claro do problema de sedimentação e afeta profundamente a costa nordeste do Delta do Nilo, no Egito. O objetivo do presente estudo é monitorar a linha costeira usando técnicas de sensoriamento remoto para avaliar o efeito do porto de Damietta e seu canal de navegação na linha costeira nos últimos 45 anos. Além disso, o período selecionado foi dividido em dois períodos para ilustrar o efeito das intervenções feitas pelo homem na costa. As linhas costeiras foram extraídas de imagens de satélite e, em seguida, o Digital Shoreline Analysis System (DSAS) foi usado para estimar taxas precisas de mudanças na linha costeira e prever a evolução futura das linhas costeiras em 2030, 2040, 2050 e 2060. O porto de Damietta criou uma área de acreção no lado oeste com uma taxa média de 2.13 m ano-1. Em contrapartida, a linha da costa no lado oriental do porto recuou 92 m em média nos últimos 45 anos. Portanto, é considerada uma das principais áreas de risco ao longo da costa nordeste do Delta do Nilo que precisa de uma solução sustentável. Além disso, um sistema de quebra-mares isolado está previsto para fornecer estabilização da costa no lado leste como o implementado na praia de Ras El-Bar. A evolução da linha costeira prevista para 2060 mostra um recuo significativo de 280 m em média.
Palavras-chave: Canal de navegação; Costa; Porto de Damietta; Sensoriamento remoto; DSAS.
Abo Zed, A. B. (2007). Effect of waves and current on the siltation problem of Damietta harbour, Nile Delta coast, Egypt. Mediterranean Coastal Engineering, 8(2), 33-48. https://doi.org/10.12681/mms.152.
Alesheikh, A. A., Ghorbanali, A., Nouri, N. (2007). Coastline change detection using remote sensing. International Journal of Environmental Science & Technology, 4(1), 61-66. https://doi.org/10.1007/bf03325962.
Bahgat, M. (2018). Mitigation measures for sediment deposition problem inside the approach navigation channel of Damietta harbour. Hydraulic Research Institute report, July 2018, 1-49.
Da Silveira, L. F., Benedet, L., Signorin, M., Bonanata, R. (2012). Evaluation of the relationships between navigation channel dredging and erosion of adjacent beaches in southern Brazil. Coastal Engineering Proceedings, 1(33), 106. https://doi.org/10.9753/ icce.v33.sediment.106.
Danforth, W. W., Thieler, E. R. (1992). Digital Shoreline Analysis System (DSAS) user's guide; version 1.0 (No. 92-355). US Geological Survey. https://doi.org/10.3133/ofr92355.
Deabes, E. (2010). Sedimentation processes at the navigation channel of Liquid Natural Gas (LNG), Nile Delta, Egypt. International Journal of Geosciences, 1(01), 14-20. https://doi.org/10.4236/ijg.2010.11002.
Deguchi, I., Sawaragi, T., Ono, M., Koontanakulvong, S. (1994). Mechanism and estimation of sediment in Bangkok Bar Channel. Coastal Engineering 1995, 3002- 3015.
https://doi.org/10.1061/9780784400890.217.
Dewidar, K. H., Frihy, O. (2007). Pre-and post-beach response to engineering hard structures using Landsat time-series at the northwestern part of the Nile delta, Egypt. Journal of Coastal Conservation, 11(2), 133-142. https://doi.org/10.1007/s11852-008-0013-z.
Dewidar, K. M., Frihy O.E. (2010). Automated Techniques for Quantitfication of Beach change Rates Using Landsat Series along the North-eastern Nile Delta, Egypt. Journal of oceanography and marine science, Vol. 1(2), 028-039.
Do, A. T., Vries, S. D., Stive, M. J. (2019). The estimation and evaluation of shoreline locations, shoreline-change rates, and coastal volume changes derived from Landsat images. Journal of Coastal Research, 35(1), 56-71. https://doi.org/10.2112/JCOASTRES-D-18-00021.1.
El Asmar, H.M. White, K. (2002). Changes in coastal sediment transport processes due to construction of new Damietta harbour, Nile Delta, Egypt. Coastal Engineering, 46(2), 127-138.
https://doi.org/10.1016/s0378-3839(02)00068-6.
El Asmar, H. M., Taha, M. M., El-Sorogy, A. S. (2016). Morphodynamic changes as an impact of human intervention at the Ras El-Bar-Damietta harbor coast, NW Damietta promontory, Nile Delta, Egypt. Journal of African Earth Sciences, 124, 323-339. https://doi.org/10.1016/ j.jafrearsci.2016.09.035.
El Banna, M. M., Hereher, M. E. (2009). Detecting temporal shoreline changes and erosion/accretion rates, using remote sensing, and their associated sediment characteristics along the coast of North Sinai, Egypt. Environmental Geology, 58(7), 1419- 1427.
https://doi.org/10.1007/s00254-008-1644-y.
El nabwy, M. T., Elbeltagi, E., El Banna, M. M., Elshikh, M. M., Motawa, I., & Kaloop, M. R. (2020). An Approach Based on Landsat Images for Shoreline Monitoring to Support Integrated Coastal Management-A Case Study, Ezbet Elborg, Nile Delta, Egypt. ISPRS International Journal of Geo-Information, 9(4), 199. https://doi.org/10.3390/ijgi9040199 El-Sharnouby, B. A., El-Alfy, K. S., Rageh, O. S., El-Sharabasy, M. M. (2015). Coastal changes along Gamasa beach, Egypt. Journal of Coastal Zone Management, 12, 393. https://doi.org/10.4172/2473-3350.1000393.
Frihy, O. E., Deabes, E.A. , Helmy, E. (2016). Compatibility analysis of dredged sediments from routine pathways and maintenance of harbor's channels for reuse in nearshore nourishment in the Nile Delta, Egypt. Journal of Coastal Research, 32(3), 555-566.
https://doi.org/10.2112/jcoastres-d-14-00181.1.
Frihy, O. E., Komar, P. D. (1993). Long-term shoreline changes and the concentration of heavy minerals in beach sands of the Nile Delta, Egypt. Marine Geology, 115(3-4), 253-261. https://doi.org/10.1016/0025-3227(93)90054-y.
Frihy, O.E. , El Banna, M. M. El Kolfat , A. I. (2004). Environmental impacts of Baltim and Ras El Bar shore-parallel breakwater systems on the Nile Delta littoral zone, Egypt. Environmental Geology, 45(3), 381-390. https://doi.org/10.1007/s00254-003-0886-y.
Gad, M. A., Saad A., El-Fiky, A., Khaled, M. (2013). Hydrodynamic modeling of sedimentation in the navigation channel of Damietta harbor in Egypt. Coastal Engineering Journal, 55(2), 1-31.
https://doi.org/10.1142/s0578563413500071.
Guariglia, A., Buonamassa, A., Losurdo, A., Saladino, R., Trivigno, M. L., Zaccagnino, A., Colangelo, A. (2006). A multisource approach for coastline mapping and identification of shoreline changes. Annals of geophysics, 49(1).
Kabir, M. A., Salauddin, M., Hossain, K. T., Tanim, I. A., Saddam, M. M. H., Ahmad, A. U. (2020). Assessing the shoreline dynamics of Hatiya Island of Meghna estuary in Bangladesh using multiband satellite imageries and hydro-meteorological data. Regional Studies in Marine Science, 35, 101167. https://doi.org/10.1016/ j.rsma.2020.101167.
Khalifa, A. M. (2017). Controlling sedimentation problems of Damietta harbor navigation channel using numerical modelling. M.SC. Thesis, Alexandria University faculty of engineering, Alexandria, 1-150.
Khalifa, A. M., Soliman, M. R., Yassin, A. A. (2017). Assessment of a combination between hard structures and sand nourishment eastern of Damietta harbor using numerical modeling. Alexandria Engineering Journal, 56(4), 545-555. https://doi.org/10.1016/j.aej.2017.04.009.
Kuleli, T. (2010). Quantitative analysis of shoreline changes at the Mediterranean Coast in Turkey. Environmental monitoring and assessment, 167(1-4), 387-397. DOI: 10.1007/s10661-009-1057-8.
Kumar, A., Narayana, A. C., Jayappa, K. S. (2010). Shoreline changes and morphology of spits along southern Karnataka, west coast of India: A remote sensing and statistics-based approach. Geomorphology, 120(3-4), 133-152. https://doi.org/10.1016/ j.geomorph.2010.02.023.
Louati, M., Saïdi, H., Zargouni, F. (2015). Shoreline change assessment using remote sensing and GIS techniques: a case study of the Medjerda delta coast, Tunisia. Arabian Journal of Geosciences, 8(6), 4239-4255. DOI: 10.1007/s12517-014-1472-1.
Leys, V., Ryan P. Mulligan, R.P. 2011. Modelling coastal sediment transport for harbour Planning: Selected case studies. Sediment Transport, 31. https://doi.org/10.5772/15007.
Li, R., Liu, J. K., Felus, Y. (2001). Spatial modeling and analysis for shoreline change detection and coastal erosion monitoring. Marine Geodesy, 24(1), 1-12. https://doi.org/10.1080/01490410151079891
Moore, L. J. (2000). Shoreline mapping techniques. Journal of coastal research, 111-124.
Nguyen, V. T., Zheng, J. H., Zhang, J. S. (2013). Mechanism of back siltation in navigation channel in Dinh an estuary, Vietnam. Water Science and Engineering, 6(2), 178-188. https://doi.org/10.3882/
j.issn.1674-2370.2013.02.006.
Niya, A. K., Alesheikh, A. A., Soltanpor, M., Kheirkhahzarkesh, M. M. (2013). Shoreline change mapping using remote sensing and GIS. International Journal of Remote Sensing Applications, 3(3), 102.
Perillo G. M., Cuadrado D. (1991). Geomorphologic evolution of E1 Toro channel, Bahia Blanca Estuary (Argentina) prior to dredging. Marine Geology, 97(3-4), 405-412. https://doi.org/10.1016/0025-3227(91)90129-R.
Sanga, I.P.L., Dubi, A.M. (2004). Impact of improvement of entrance channel on the rate of sediment deposition into the Dar es Salam harbour. Western Indian Ocean J. Mar. Sci., 3(2), 105-112. https://doi.org/10.4314/wiojms.v3i2.28454.
Wang, X., Liu, Y., Ling, F., Liu, Y., Fang, F. (2017). Spatio-Temporal change detection of Ningbo coastline using Landsat time-series images during 1976-2015. ISPRS International Journal of Geo-Information, 6(3), 68. DOI:10.3390/ijgi6030068.
Zimmermann, N., Trouw, K., Wang, L., Mathys, M., Delgado, R., Verwaest, T. (2012). Longshore transport and sedimentation in a navigation channel at Blankenberge (BELGIUM). Coastal Engineering, 1(33), 111. https://doi.org/10.9753/icce.v33.sediment.111.