Volume 23, Issue 1 - June 2023
Download (1730KB, PDF) |
|
- Abstract / Resumo
- References / Bibliografia
- Citations / Citações
Revista de Gestão Costeira Integrada
Volume 23, Issue 1, June 2023, Pages 27-40
DOI: 10.5894/rgci-n499
*Submission: 31 JAN 2022; Peer review: 10 FEB 2022; Revised: 7 SEP 2023; Accepted: 7 SEP 2023; Available on-line: 7 FEB 2024
An assessment of relative potential impacts to Cyprus’ shoreline due to oil spills in the Eastern Mediterranean Sea
Nikolas Gomes Silveira de Souza@ 1, Jader Lugon Jr.1, 2, Edna N. Yamasaki3, Ioannis Kyriakides4, Antônio J. Silva Neto5
@ Corresponding author: nichsouz@msn.com
1 Fluminense Federal Institute (IFF-Campos), Brazil
2 Email: jlugonjr@gmail.com
3 University of Nicosia(UNIC), Cyprus. Email: yamasaki.e@unic.ac.cy
4 University of Nicosia(UNIC), Cyprus. Email: kyriakides.i@unic.ac.cy
5 Polytechnic Institute (IPRJ), Brazil. Email: ajsneto@iprj.uerj.br
ABSTRACT
An oil spill occurrence is a concerning pervasive situation that can result in significant risk, depending on where it starts, the oil properties, and the environmental conditions. In the region of Cyprus, there is an intense traffic of shipping activities which intensifies the risk of an oil spill due to vessel density and prolongated permanence time. The purpose of this work is to obtain the relative potential impact in Cyprus by performing an assessment based on mathematical simulations to identify the critical places in the Eastern Mediterranean Sea, aiming at increasing the readiness for minimising the impact of an oil spill in sensitive areas, with attention to the atmosphere, hydrosphere, lithosphere, biosphere, and anthroposphere. This work simulated 384 scenarios using Mohid and Opendrift platforms with the same data input. The preliminary results presented significant impact in Cyprus’ western regions, mainly. However, after interpolating with history, sensitivity, distance, and two models, only three specific regions showed a potential relative impact. Though different platforms have been used, there were some equivalences in the predictions. Based on it, a new and more specific mathematical method was proposed to assess the potential relative impact of an oil spill in Cyprus, concluding that even with much more intense oil transport in other areas of the Eastern Mediterranean Sea, the most significant relative risks are in fact, in the areas surrounding Cyprus. In particular, the region in the south, east and west of Cyprus. It must be emphasised that the south of Cyprus is an important region for the economy of the country.
Keywords: Oil, Spill, Mohid, Opendrift, Risk, Assessment
RESUMO
Uma ocorrência de derramamento de óleo é uma situação comum e preocupante que pode resultar em um risco significante, dependendo de onde iniciou, as características do óleo e as condições ambientais. Na região do Chipre, há um intenso tráfego de atividades de transporte marítimo o qual intensifica o risco de um vazamento de óleo dada a densidade de embarcações e tempo de permanência prolongado. O objetivo deste trabalho é de se obter o impacto potencial relativo no Chipre através de uma avaliação, baseada em simulações matemáticas a fim de identificar os pontos críticos no Mar Mediterrâneo Oriental, buscando aumentar a preparação para minimização de impactos de um vazamento de óleo em áreas sensíveis, atento a temas de atmosfera, hidroesfera, litoesfera, biosfera e antroposfera. Este trabalho simulou 384 cenários usando as plataformas MOHID e Opendrift, usando os mesmos dados de entrada. Os resultados preliminares apresentaram impactos significativos à região mais oriental do Chipre, principalmente. Contudo, após interpolação com dados históricos, sensibilidade e dois modelos, apenas três regiões específicas ofereceram impacto relativo considerável. Foi observado que mesmo em diferentes plataformas, houve equivalência de resultados. Baseado nestas equivalências, um método matemático novo e mais específico foi proposto para avaliar o impacto relativo potencial de um vazamento de óleo no Chipre, concluindo que, mesmo com maior intensidade no transporte de óleo em outras áreas do Mar Mediterrâneo Oriental, os riscos relativos mais significantes foram, de fato, nas áreas próximas ao Chipre. Especificamente, na região ao sul, leste e oeste do Chipre. Deve-se esclarecer que ao sul do Chipre, há uma região importante para a economia do País.
Palavras-chave: Petróleo, Vazamento, Mohid, Opendrift, Risco, Avaliação
Al-Rabeh, A.H., Cekirge, H.M., Gunay, N., 1989. A stochastic simulation model of oil spill fate and transport. Applied Mathematical Modelling 13, 322–329. https://doi.org/10.1016/0307-904X(89)90134-0 Allen, C.M., 1982. Numerical simulation of contaminant dispersion in estuary flows. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 381, 179–194. https://doi.org/10.1098/rspa.1982.0064
Alves, T.M., Kokinou, E., Zodiatis, G., Radhakrishnan, H., Panagiotakis, C., Lardner, R., 2016. Multidisciplinary oil spill modeling to protect coastal communities and the environment of the Eastern Mediterranean Sea. Scientific Reports 6, 36882. https://doi.org/10.1038/srep36882
Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.F., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J.M., Aouf, L., Collard, F., 2010. Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. Journal of Physical Oceanography 40, 1917–1941. https://doi.org/10.1175/2010JPO4324.1
Aven, T., 2012. The risk concept-historical and recent development trends. Reliability Engineering and System Safety 99, 33–44. https://doi.org/10.1016/j.ress.2011.11.006
Baird, C., Cann, M.C., 2012. Environmental chemistry, 5th ed. ed. W.H. Freeman, New York.
Balogun, A.-L., Yekeen, S.T., Pradhan, B., Wan Yusof, K.B., 2021. Oil spill trajectory modelling and environmental vulnerability mapping using GNOME model and GIS. Environmental Pollution 268, 115812. https://doi.org/10.1016/j.envpol.2020.115812
Breivik, Ø., Bidlot, J.-R., Janssen, P.A.E.M., 2016. A Stokes drift approximation based on the Phillips spectrum. Ocean Modelling 100, 49–56. https://doi.org/10.1016/j.ocemod.2016.01.005
Breivik, Ø., Janssen, P.A.E.M., Bidlot, J.-R., 2013. 716 Approximate Stokes Drift Profiles in Deep Water.
Chen, H., Li, D., Li, X., 2007. Mathematical Modeling of Oil Spill on the Sea and Application of the Modeling in Daya Bay. Journal of Hydrodynamics 19, 282–291. https://doi.org/10.1016/S1001-6058(07)60060-2
Chen, J., Zhang, W., Wan, Z., Li, S., Huang, T., Fei, Y., 2019. Oil spills from global tankers: Status review and future governance. Journal of Cleaner Production 227, 20–32. https://doi.org/10.1016/j.jclepro.2019.04.020
Clementi, E., Pistoia, J., Escudier, R., Delrosso, D., Drudi, M., Grandi, A., Lecci, R., Cretì, S., Ciliberti, S.A., Coppini, G., 2019. Mediterranean Sea Analysis and Forecast (CMEMS MED-Currents 2016-2019).
Cyprus, 2021. DEPARTMENT OF FISHERIES AND MARINE RESEARCH - Aquaculture. In: http://www.moa.gov.cy/moa/dfmr/dfmr.nsf/All/C543D53DAC6EE96C42257EA0003430C9?OpenDocument (accessed 3.18.21).
Cyprus, 2019. MOVEMENT OF TRAVELLERS, 1980-2019 [WWW Document]. In: https://www.mof.gov.cy/mof/cystat/statistics.nsf/All/802B288B5F25DDB3C225779E00314F02/$file/TOURISM_STATISTICS-JANDEC19-EN-140820.xls?OpenElement (accessed 10.31.20).
Dagestad, K.-F., Breivik, Ø., \rAdlandsvik, B., 2016. OpenDrift - an open source framework for ocean trajectory modeling, in: EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts. pp. EPSC2016-7282.
Dagestad, K.-F., Röhrs, J., Breivik, Ø., Ådlandsvik, B., 2018. OpenDrift v1.0: a generic framework for trajectory modelling. Geoscientific Model Development 11, 1405–1420. https://doi.org/10.5194/gmd-11-1405-2018
Daniel, P., Marty, F., Josse, P., Skandrani, C., Benshila, R., 2003. Improvement of Drift Calculation in Mothy Operational Oil Spill Prediction System. International Oil Spill Conference Proceedings 2003, 1067–1072. https://doi.org/10.7901/2169-3358-2003-1-1067.
Doherty, F. V, Aneyo, I., Otitoloju, A.A., 2019. Histopathological and biochemical alterations in Eudrilus eugeniae (Kinberg 1867) as biomarkers of exposure to monocyclic aromatic hydrocarbons in oil impacted site. The Journal of Basic and Applied Zoology 80, 63. https://doi.org/10.1186/s41936-019-0130-2
EFSA, 2012. Scientific Opinion on Mineral Oil Hydrocarbons in Food, EFSA Journal. Wiley-Blackwell Publishing Ltd. https://doi.org/10.2903/j.efsa.2012.2704
El-Geziry, T.M., Bryden, I.G., 2010. The circulation pattern in the Mediterranean Sea: issues for modeller consideration. Journal of Operational Oceanography 3, 39–46. https://doi.org/10.1080/1755876X.2010.11020116
EMSA, 2019. EMODnet Human Activities: EMSA Route Density Map. In: https://www.emodnet-humanactivities.eu/search-results.php?dataname=Route+density+%28source%3A+EMSA%29 (accessed 1.1.21).
Fernandes, R., 2017. Bibliographic review of HNS spill model (MOHID). In: http://wikimariner.actionmodulers.com/wiki/images/7/72/HNS_model_bibliographic_review_-_scientific_manual.pdf (accessed 12.22.20).
Gomes, A.R.C., Delunardo, F.A.C., Sadauskas-Henrique, H., Braz Mota, S., de Almeida-Val, V.M.F., 2017. Chapter 12. Genotoxic and Biochemical Responses Triggered by Polycyclic Aromatic Hydrocarbons in Freshwater and Marine Fish: Tambaqui and Seahorse as Bioindicators. pp. 278–304. https://doi.org/10.1039/9781782629887-00278
Grosell, M., Pasparakis, C., 2021. Physiological Responses of Fish to Oil Spills. Annual Review of Marine Science 13, annurev--marine--040120--094802. https://doi.org/10.1146/annurev-marine-040120-094802
Ha, M.J., 2018. Modeling for the allocation of oil spill recovery capacity considering environmental and economic factors. Marine Pollution Bulletin 126, 184–190. https://doi.org/10.1016/j.marpolbul.2017.11.006
ITOPF, 2020. Oil tanker spill statistics. In: https://www.itopf.org/fileadmin/data/Documents/Company_Lit/Oil_Spill_Stats_brochure_2020_for_web.pdf (accessed 1.8.20).
Janssen, P., 2009. The energy balance of deep-water ocean waves, in: The Interaction of Ocean Waves and Wind. Cambridge University Press, pp. 7–55. https://doi.org/10.1017/cbo9780511525018.003
Johns, L., 2019. EMODnet Human Activities: Vessel Density Map. In: https://www.emodnet-humanactivities.eu/ (accessed 1.1.21).
Jones, C.E., Dagestad, K.-F., Breivik, Ø., Holt, B., Röhrs, J., Christensen, K.H., Espeseth, M., Brekke, C., Skrunes, S., 2016. Measurement and modeling of oil slick transport. Journal of Geophysical Research: Oceans 121, 7759–7775. https://doi.org/10.1002/2016JC012113
Katircioglu, S., 2009. Tourism, trade and growth: The case of Cyprus. Applied Economics 41, 2741–2750. https://doi.org/10.1080/00036840701335512
Kirkos, G., Zodiatis, G., Loizides, L., Ioannou, M., 2018. Oil pollution in the waters of Cyprus, in: Handbook of Environmental Chemistry. pp. 229–245. https://doi.org/10.1007/698_2017_49
Kostianoy, A.G., Carpenter, A., 2018. History, sources and volumes of oil pollution in the mediterranean sea. Handbook of Environmental Chemistry 83, 9–31. https://doi.org/10.1007/698_2018_369
Lemesios, G., Giannakopoulos, C., Papadaskalopoulou, C., Karali, A., Varotsos, K. V, Moustakas, K., Malamis, D., Zachariou-Dodou, M., Petrakis, M., Loizidou, M., 2016. Future heat-related climate change impacts on tourism industry in Cyprus. Regional Environmental Change 16, 1915–1927. https://doi.org/10.1007/s10113-016-0997-0
Li, P., Niu, H., Li, S., Fernandes, R., Neves, R., 2017. A Comprehensive System for Simulating Oil Spill Trajectory and Behaviour in Subsurface and Surface Water Environments. International Oil Spill Conference Proceedings 2017, 1251–1266. https://doi.org/10.7901/2169-3358-2017.1.1251
Ličer, M., Estival, S., Reyes-Suarez, C., Deponte, D., Fettich, A., 2020. Lagrangian Trajectory Modelling for a Person lost at Sea during Adriatic Scirocco Storm of 29 October 2018. Natural Hazards and Earth System Sciences 1–19. https://doi.org/10.5194/nhess-2019-362
Longuet-Higgins, M.S., 1953. Mass transport in water waves. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 245, 535–581. https://doi.org/10.1098/rsta.1953.0006
Lugon Jr., J., Juliano, M.M., Kyriakides, I., Yamasaki, E.N., Rodrigues, P.P.G.W., Silva Neto, A.J., 2020. Environmental hydrodynamic modelling applied to extreme events in Caribbean and Mediterranean countries. DESALINATION AND WATER TREATMENT 194, 315–323. https://doi.org/10.5004/dwt.2020.25819
Mavris, C., 2011. Sustainable Environmental Tourism and Insular Coastal Area Risk Management in Cyprus and the Mediterranean. Journal of Coastal Research 61, 317–327. https://doi.org/10.2112/SI61-001.32
Millot, C., Taupier-Letage, I., 2005. Circulation in the Mediterranean Sea, in: Handbook of Environmental Chemistry. pp. 29–66. https://doi.org/10.1007/b107143
Miranda, R., Braunschweig, F., Leitão, P., Neves, R., Martins, F., Santos, A., 2000. MOHID 2000 - A coastal integrated object oriented model, Water Studies. WIT Press. https://doi.org/10.2495/HY000371
NCEP - National Centers for Environmental Prediction/National Weather Service/NOAA/U.S, 2015. NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive. In: https://doi.org/https://doi.org/10.5065/d65d8pwk
Neves, R., 1985. Bidimensional model for residual circulation in coastal zones: application to the Sado estuary. Annales geophysicae 3, 465–471.
Newman, M.C., 2015. Fundamentals of Ecotoxicology - The Science of Pollution, CRC Press/Taylor & Francis.
Newman, M.C., Clements, W.H., 2008. Ecotoxicology: a comprehensive treatment. CRC Press, Boca Raton, FL.
Niaz, K., Bahadar, H., Maqbool, F., Abdollahi, M., 2015. A review of environmental and occupational exposure to xylene and its health concerns. EXCLI Journal; 14:Doc1167; ISSN 1611-2156. https://doi.org/10.17179/EXCLI2015-623
Nikolaidis, A., Akylas, E., Michailides, C., Moutsiou, T., Leventis, G., Constantinides, A., McCartney, C., Demesticha, S., Kassianidou, V., Zomeni, Z., Bar-Yosef Mayer, D., Makovsky, Y., Kyriakidis, P., 2020. Modeling drift-induced maritime connectivity between Cyprus and its surrounding coastal areas during early Holocene, in: EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts. p. 19782.
Oliveira, A.R., Ramos, T.B., Simionesei, L., Pinto, L., Neves, R., 2020. Sensitivity Analysis of the MOHID-Land Hydrological Model: A Case Study of the Ulla River Basin. Water 12, 3258. https://doi.org/10.3390/w12113258
Osuagwu, E.S., Olaifa, E., 2018. Effects of oil spills on fish production in the Niger Delta. PLOS ONE 13, e0205114. https://doi.org/10.1371/journal.pone.0205114
Paiva, P.M., Lugon Junior, J., Barreto, A.N., Silva, J.A.F., Silva Neto, A.J., 2017. Comparing 3d and 2d computational modeling of an oil well blowout using MOHID platform - A case study in the Campos Basin. Science of The Total Environment 595, 633–641. https://doi.org/10.1016/j.scitotenv.2017.04.007
Pasparakis, C., Esbaugh, A.J., Burggren, W., Grosell, M., 2019. Impacts of deepwater horizon oil on fish. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology. https://doi.org/10.1016/j.cbpc.2019.06.002
Qiao, F., Wang, G., Yin, L., Zeng, K., Zhang, Y., Zhang, M., Xiao, B., Jiang, S., Chen, H., Chen, G., 2019. Modelling oil trajectories and potentially contaminated areas from the Sanchi oil spill. Science of the Total Environment 685, 856–866. https://doi.org/10.1016/j.scitotenv.2019.06.255
Rodrigues, P.P.G.W., 2012. MOHID Description / MARETEC, 1st ed. Essentia Editora, Campos dos Goytacazes, RJ, Brazil.
Silva, A., de Pablo, H., Moita, M.T., Quental, T., Pinto, L., 2013. Ocean modelling for coastal management – Case studies with MOHID using Lagrangian elements to simulate alongshore transport of harmful algal blooms. IST Press.
Sullivan, P.J., 1971. Longitudinal dispersion within a two-dimensional turbulent shear flow. Journal of Fluid Mechanics 49, 551. https://doi.org/10.1017/S0022112071002258
Visser, A.W., 1997. Using random walk models to simulate the vertical distribution of particles in a turbulent water column. MARINE ECOLOGY PROGRESS SERIES 158, 275–281.
Ward, C.H., 2017. Habitats and biota of the Gulf of Mexico: Before the deepwater horizon oil spill, Habitats and Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Spill. Springer New York. https://doi.org/10.1007/978-1-4939-3447-8
Zodiatis, G., Drakopoulos, P., Brenner, S., Groom, S., 2005. Variability of the Cyprus warm core Eddy during the CYCLOPS project. Deep-Sea Research Part II: Topical Studies in Oceanography 52, 2897–2910. https://doi.org/10.1016/j.dsr2.2005.08.020.
em constru��o