Volume 8, Issue 1 - 2008
![]() |
- Abstract / Resumo
- References / Bibliografia
- Citations / Citações
Revista de Gestão Costeira Integrada
Volume 8, Número 1, 2008, Páginas 9-23
DOI: 10.5894/rgci27
* Submissão - 20 Novembro 2007; Avaliação e Decisão - 8 Janeiro 2008;
Recepção da versão revista - 9 Fevereiro 2008; Aceitação - em 12
Fevereiro 2008; Disponibilização on-line - 11 de Março 2008
Aplicação de metodologias de monitorização GPS em litorais arenosos: Geração de modelos de elevação do terreno *
Application of GPS survey methodologies in sandy shore environments: Generation of digital elevation models
Paulo Baptista 1, Luísa Bastos 1, Telmo Cunha 2,
Cristina Bernardes 3, João Alveirinho Dias 4
1 - Autor correspondente - renato.baptista@fc.up.pt,
Observatório Astronómico – Faculdade de Ciências – Universidade do
Porto, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia,
Portugal, Phone: +351 227861290; Fax: +351 227861299
2 - Instituto de Telecomunicações – Universidade de Aveiro, Campus de Santiago, 3810 Aveiro, Portugal
3 - Departamento de Geociências - Universidade de Aveiro, Campus de Santiago, 3810 Aveiro, Portugal
4 - FCMA/CIMA – Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
RESUMO
A rapidez no processo de monitorização de segmentos litorais
constituídos por praias arenosas relativamente extensas, aliada a
níveis de precisão indispensáveis para estudos de evolução da linha de
costa e de caracterização morfodinâmica implica, frequentemente, o
desenvolvimento de novas metodologias. Durante as últimas décadas, os
levantamentos de campo foram efectuados recorrendo, principalmente, a
técnicas fotogramétricas ou de geodesia clássica. Com o advento das
técnicas de geodesia espacial, novas metodologias de base terrestre e
aérea foram introduzidas nos programas de monitorização litoral.
O presente trabalho apresenta um protótipo que foi desenvolvido para
monitorizar, de forma eficiente e produtiva, as morfologias presentes
em praias arenosas. Este protótipo recorre à utilização do Sistema de
Posicionamento Global (= “Global Positioning System” – GPS),
incorporando um sistema multi-antena GPS montado numa plataforma móvel
- um veículo todo-o-terreno apropriado para se deslocar em ambiente de
praia. A monitorização é efectuada sob a forma de uma rede de perfis
longitudinais e transversais relativamente à linha de costa, que
incluem toda a praia sub-aérea, desde o limite de espraio da onda até à
base do cordão dunar frontal, ou outra variação topográfica
significativa do terreno. A partir da rede de perfis GPS obtida, cuja
densidade é definida, em cada caso, de acordo com as características do
terreno, é gerado um modelo de elevação do terreno (= “Digital
Elevation Model” – DEM). A partir desse DEM é possível extrair
informação relevante para caracterização morfodinâmica de praias
arenosas, nomeadamente o volume da praia emersa, o declive da face da
praia, a localização de bermas e de outros elementos morfológicos.
No que diz respeito à eficácia da metodologia proposta, os testes de
validação que foram realizados permitem concluir que a precisão final
dos DEMs é superior a 0,10 m (RMS) (valores médios de RMS entre 0,07 e
0,09 m). Relativamente à produtividade alcançada verifica-se que esta é
dependente, essencialmente, do estado morfodinâmico da praia. Em praias
dissipativas, a experiência adquirida permite constatar que é possível
monitorizar, em média, três quilómetros de praia por hora, considerando
uma largura média de praia de cerca de 150 m. Estes valores decrescem
para cerca de um quilómetro de praia por hora quando se trata de praias
reflectivas, com terraço de maré, cúspides bem desenvolvidas, e uma ou
mais bermas na média e alta praia.
A presente metolodogia pode considerar-se promissora para a realização
de programas regulares de monitorização de baixo custo, oferecendo
vantagens adicionais de independência relativamente às condições
meteorológicas, permitindo, por conseguinte, a caracterização do
impacte de temporais.
ABSTRACT
The development of survey systems characterised by high accuracy and
productivity is fundamental when it is intended to establish regular
monitoring programmes in large littoral stretches. The acquired data is
fundamental to study the shoreline evolution trends and to support
other morphodynamic studies.
During the last decades, the general methodological approach for the
establishment of coastal monitoring programmes was essentially based on
photogrammetry or classical geodetic techniques. With the advent of new
geodetic techniques, space based and airborne based, new methodologies
were introduced in coastal monitoring programmes. The use of the Global
Positioning System (GPS) to support land based sandy beach studies
started in the 1990’s. In most of the works cited in the scientific
literature the GPS antenna is adapted in a land vehicle or transported
on the top of a surveying pole by the operator. Others applications
include the use of GPS integrated with active sensors in aerial
platforms, like the Airborne Laser Scanning (ALS), known by the acronym
LIDAR (LIght Detection and Ranging). These technique allow high
productivity and accuracy in sandy shore survey, with additional
advantages in relation to photogrammetry related with the possibility
of generate Digital Elevation Models (DEMs). However, the high cost of
these systems limits the generalisation of its application in sandy
shore environments.
Most of the errors that affect GPS techniques when land based, on-foot
methodologies are employed, are related with careless operation during
the survey. Heterogeneous burying and inclination of the telescopic
pole where the GPS antenna is installed induce random errors that can
reach several tens of centimetres. In the case of kinematic GPS surveys
where the telescopic pole is carried on-hand, without a contact point
with the ground, it is difficult to assure a constant distance in
relation to the ground surface. When the kinematic GPS antennas are
installed in land vehicles, systematic position errors can be committed
due to ground slope changes. These errors affect the positioning
precision, but can be compensated if more than one GPS antenna is used
in the vehicle.
This paper concerns with the development of a monitoring prototype, to
survey the sandy shore morphologies, which is based in the use of the
GPS. This prototype has a multi-antenna GPS based system mounted on a
fast surveying platform, a land-vehicle appropriate for driving in the
sand (four-wheel quad). This system was conceived to perform a network
of profiles in sandy shores stretches, since the swash line until the
frontal dune baseline (sub-aereal beach), in littoral stretches with
several kilometres of extension. From the acquired data high precision
Digital Elevation Models (DEMs) can be generated. From these models, it
is possible to compute the sedimentary volume present in the sub-aereal
beach, the beach face slope, to locate the sand cusps, berms, the
frontal dune baseline and other morphological elements present in sandy
shores.
An analysis of the accuracy and precision of some Differential GPS
(DGPS) kinematic methodologies is presented. The development of an
adequate survey methodology is the first step in the morphodynamic
shore characterisation or in the coastal hazard assessment. The
sampling method and the computational interpolation procedures are
important steps to produce reliable 3D surface maps as close as
possible to the reality. The quality of several interpolation methods
used to generate grids was tested in the areas where there were data
gaps. The results obtained allow to conclude that with the developed
survey methodology, it is possible to survey sandy shores stretches,
under spatial scales of kilometres, with vertical accuracy in the final
Digital Elevation Models (DEMs) higher than 0,10 m (RMS). This
precision is slightly better than the precision cited in the literature
for the DEMs obtained from ALS when applied in shore context. After
validation with independent techniques the precision of a DEM obtained
by ALS is situated between 0.15 and 0.25 m (RMS) in the vertical
component.
The productivity of the proposed methodology depends on the beach
morphodynaic state. From previous experience in dissipative beaches it
can be concluded that it is possible to survey littoral stretches of
about three kilometres extension per hour. In reflective beaches these
values decrease to one kilometre per hour.
Since 2002 several study cases have been conducted in Portuguese west
coast, which include exposed, semi-exposed and protected sandy beaches.
These studies have been carried out on regular seasonal bases that
allow a short-term morphodynamic characterisation.
The present methodology can be considered promising since it allows to
perform relatively low cost regular monitoring programmes, with
additional advantages regarding the possibility of surveying in almost
all meteorological conditions, that is of fundamental importance to
analyse the storms impact over sandy shores.
Baptista,
P., Bastos, L., Jesus, M.E. & Correia E. (2003) - Morphodynamic
Evolution of the Sand-Spit in the Mouth of Douro River Through DGPS
Monitorization. Actas do 3º Symposium on River, Coastal and Estuarine
Morphodynamics (RCEM 2003). Barcelona, Espanha, 1060-1067.
Baptista,
P., Bastos, L. & Veloso-Gomes, F. (2004a) - Impacte Morfodinâmico
de uma Obra de Protecção Costeira: O Quebra-mar da Aguda. Actas da 4ª
Assembleia Luso-Espanhola de Geodesia e Geofísica. Figueira da Foz,
Portugal, 27-28.
Baptista, P., Bastos, L.,
Cunha, T., Bernardes, C., Dias, A. (2004b) - Monitorização de Litorais
Arenosos. Actas da III Conferência Nacional de Cartografia e Geodesia.
Aveiro, Portugal. Dezembro 2002. Edições Lidel, Maio 2004, pp. 77-85.
Baptista,
P., Bastos, L, Bernardes, C. & Veloso-Gomes, F. (2006) - Evolução
do litoral da Praia da Aguda (NW de Portugal) após a construção de um
quebramar destacado. Actas do 5º Simposio sobre a Margem Ibérica
Atlântica. Aveiro, Portugal, 25-26.
Baptista,
P., Bastos, L, Bernardes, C. & Taborda, R. (2006a) - Large Scale
Morphodynamics Characterisation of Exposed Sandy Beaches by DGPS.
Journal of Coastal Research, Special Issue nº 39, 237-241.
Baptista,
P., Bastos, L., Bernardes, C., Cunha, T. & Dias, J.A. (no prelo).
Monitoring Sandy Shores Morphologies by DGPS – A Practical Tool to
Generate Digital Elevation Models. Journal of Coastal Research. DOI
10.2112/07-0861.1.
Cressie, N.A.C. (1990) - The Origins of Kriging. Mathematical Geology, 22, 239-252.
Cunha,
T. (2002) - High Precision Navigation Integrating Satellite Information
– GPS – And Inertial System Data. Tese de Doutoramento (não publicada).
Universidade do Porto, Portugal, 215 p.
Davis, J. & Jonh, C. (1986) - Statistics and Data Analysis in Geology. John Wiley and Sons, New York.
Gama,
C. (2005) - Dinâmica de Sistemas Sedimentares do Litoral Ocidental
Português a Sul do Cabo Espichel. Tese de Doutoramento (não publicada).
Universidade de Évora, Portugal, 359 p.
Gama,
C. & Baptista, P. (2006) - Evolução dos campos dunares contíguos às
praias das Furnas e da Amoreira (Litoral Sudoeste de Portugal). Actas
do 5º Simposio sobre a Margem Ibérica Atlântica. Aveiro, Portugal,
81-82.
Groat, C.G. (2000) - U.S. Geological Survey: Facing the New Century. Sea Technology, 41(1), 45-47.
Hofmann-Wellenhof,
B., Lichtenegger, H. & Collins, J. (1998) - Global Positioning
System – Theory and Practice. 4st Edittion, Springer-Verlag, Inc.
Huang,
J., Jackson, D. W. T. & Cooper, J. A. G. (2002) - Morphological
Monitoring of a High Energy Beach System Using GPS and Total Station
Techniques, Runkerry, Co. Antrim, Northern Ireland. Journal of Coastal
Research, SI36, 390-398.
Krabill, W.B.,
Wright, C.W., Swift, R.N., Frederick, E.B., Manizade, S.S., Yungel,
J.K., Martin, C.F., Sonntag, J.G., Duffy, M., Hulslander, W. &
Brock, J.C. (2000) - Airborne Laser Mapping of Assateague National
Seachore Beach. Photogrammetric Engineering and Remote Sensing, 66,
65-71.
Larson, M. & Kraus, N. C. (1995)
- Prediction of Cross-Shore Sediment Transport at Different Spatial and
Temporal Scales. Marine Geology, 126, 111-127.
Lee,
D.T. & Schachter, B.J. (1980) - Two Algorithms for Constructing a
Delaunay Triangulation. International Journal of Computer and
Information Sciences, 9(3), 219-242.
Meredith,
A. W., Eslinger, D. & Aurin, D. (1999) - An Evaluation of Hurricane
– Induced Erosion along the North Carolina Coast Using Airborne LIDAR
Surveys. National Oceanic and Atmospheric Administration Coastal
Services Center Technical Report, NOAA/CSC/99031-PUB/001.
Morton,
R.A., Leach, M.P., Paine, J.G. & Cardoza, M.A. (1992) - Monitoring
Beach Changes Using GPS Surveying Techniques. Journal of Coastal
Research, 9(3), 702-720.
Short, A. D. (1999) - Handbook of Beach and Shoreface Morphodynamics. Andrew D. Short (eds). John Wiley & Sons Ltd, England.
Sibson, R. (1980) - A Vector Identity for the Dirichlet Tessilation. Mathematics Proc. Cambridge Phil. Soc., 87, 151-155.
Sibson,
R. (1981) - A Brief Description of Natural Neighbour Interpolation,
Interpreting Multivariate Data, V. Barnett editor, John Wiley and Sons,
New York.
Smith, W.H.F. & Wessel, P. (1990) - Gridding with Continuous Curvature Splines in Tension. Geophysics. 55(3), 293-305.
Woolard,
J.W. & Colby, J.D. (2002) - Spatial Characterization, Resolution,
and Volumetric Change of Coastal Dunes Using Airbone LIDAR: Cape
Hatteras, North Carolina. Geomorphology, 48, 269-287.
Wright, L.D. & Short, A.D. (1984) - Morphodynamic Variability of Surf Zones and Beaches: A Synthesis. Marine Geology, 56, 93-118.
em construção