Volume 16, Issue 3 - September 2016
|
- Abstract / Resumo
- References / Bibliografia
- Citations / Citações
Revista de
Gestão Costeira
Integrada
Volume 16, Issue 3, September 2016, Pages 343-355
DOI: 10.5894/rgci660
* Submission: 14 DEC 2015; Peer review: 2 FEB 2016; Revised: 31 MAR 2016; Accepted: 14 APR 2015; Available on-line: 9 MAY 2016
Supporting
Information (778KB, PDF)
Nonlinear and dispersive wave effects in coastal processes *
José Simão Antunes do Carmo a
a - University of Coimbra, Department of Civil Engineering, 3030-788 Coimbra, Portugal. e-mail: jsacarmo@dec.uc.pt
ABSTRACT
Numerical models are useful instruments for studying complex superposition of wave-wave and wave-current interactions in coastal and estuarine regions, and to investigate the interaction of waves with complex bathymetries or structures built in nearshore areas. The ability of the standard Boussinesq and Serre or Green and Naghdi equations to reproduce these nonlinear processes is well known. However, these models are restricted to shallow water conditions, and addition of other terms of dispersive origin has been considered since the 90’s, particularly for approximations of the Boussinesq-type. Using the general wave theory in shallow water conditions, the different approaches commonly used in hydrodynamics studies in river systems, estuaries and coastal zones are initially addressed. Then, to allow applications in a greater range of shallow waters, namely in intermediate water conditions, a new set of extended Serre equations, with additional terms of dispersive origin, is presented and tested with available data in the literature. The hydrodynamic module, composed of the extended Serre equations, is then used as part of a morphodynamic model, which incorporates two more equations taking into account various processes of sediment transport. The wave velocity-skewness and the acceleration-asymmetry are taken into account and discussed based on numerical results and physical considerations.
Keywords: Wave theory in shallow waters, extended Serre equations, sediment transport, Bailard model, wave accelerationasymmetry,
wave velocity-skewness.
Efeitos não-lineares e dispersivos da onda nos processos costeiros
RESUMOOs modelos numéricos são instrumentos úteis para estudar a propagação de ondas em meios com diferentes características, desde águas profundas (ao largo) até condições de água pouco profunda, e investigar a interação de ondas com batimetrias complexas ou estruturas construídas em regiões costeiras e estuarinas. As capacidades de modelos do tipo Boussinesq e as equações de Serre, ou de Green e Naghdi, para reproduzir os processos não-lineares de diversas interações são bem conhecidas. No entanto, estas aproximações clássicas restringem-se a condições de águas pouco profundas. Desde meados da década de 90 têm sido desenvolvidas formulações que modificam ou acrescentam termos de origem dispersiva para aplicações mais generalizadas, particularmente em aproximações do tipo Boussinesq. Recorrendo à teoria geral das ondas em condições de águas pouco profundas, são aqui apresentadas, em primeiro lugar, as aproximações comumente usadas em estudos da hidrodinâmica em meios fluviais, estuários e zonas costeiras. Tendo como objetivo alargar o campo de aplicação a outros domínios, em particular a condições de águas intermédias, é em seguida apresentada e testada com dados experimentais uma formulação das equações clássicas de Serre com melhores características dispersivas lineares. Por fim, é proposto um modelo morfodinâmico 1DH composto por um módulo hidrodinâmico, que resolve as equações expandidas de Serre, e por duas equações que incorporam vários processos de transporte sedimentar. Em particular, são avaliados e discutidos termos de transporte induzidos pelo enviesamento (skewness) e pela assimetria da onda.
Palavras-chave: Teoria da onda em água pouco profunda, equações expandidas de Serre, transporte sedimentar, modelo de
Bailard, enviesamento e assimetria da onda.
Bailard, J.A. (1981) - An energetics
total load sediment transport model for a plane sloping beach. Journal
of Geophysical Research,
86(C11):10938-10954. DOI: 10.1029/JC086iC11p10938.
Beji, S.; Battjes, J.A. (1993) - Experimental investigations of wave
propagation over a bar. Coastal Engineering, 19(1-2):151-162.
DOI: 10.1016/0378-3839(93)90022-Z.
Beji, S.; Nadaoka, K., 1996. A formal derivation and numerical modelling of the improved Boussinesq equations for varying depth, Ocean Engineering, 23(8):691. DOI: 10.1016/0029-8018(96)84408-8.
Berkhoff, J.C.W.; Booij, N.; Radder, A.C. (1982) - Verification of
numerical wave propagation models foe simple harmonic linear water waves. Coastal Engineering, 6:255-279.
DOI: 10.1016/0378-3839(82)90022-9.
Berni, C.; Suarez, L.; Michallet, M.; Barthélemy, E. (2012) – Asymmetry and skewness in the bottom boundary layer: Small scale experiments and numerical model. 33rd International Conference on Coastal Engineering (25), Santander, Spain. Available online at https://icce-ojstamu.tdl.org/icce/index.php/icce/article/view/6637.
Booij, N. (1983) - A note on accuracy of the mild-slope equation.
Coastal Engineering, 7(3):191-203.
DOI: 10.1016/0378-3839(83)90017-0.
Boussinesq, J. (1872) - Théorie des ondes et des remous qui se
propagent le long d’un canal rectangulaire horizontal. Journal of
Mathématiques Pures et Appliquées, 2(17):55-108. Available online at https://eudml.org/doc/234248
Carmo, J.S. Antunes do ; Seabra-Santos, F.J. (1996) - On breaking
waves and wave-current interaction in shallow water: A 2DH finite element model. International Journal for Numerical Methods in Fluids, 22:429-444. DOI: 10.1002/(SICI)1097-0363(19960315)
22:5<429::AID-FLD388>3.0.CO;2-8
Carmo, J.S. Antunes do (2013a) - Boussinesq and Serre type models
with improved linear dispersion characteristics: Applications. Journal of Hydraulic Research, IAHR, 51(6):719-727.
DOI:10.1080/00221686.2013.814090.
Carmo, J.S. Antunes do (2013b) - Extended Serre Equations for
Applications in Intermediate Water Depths. The Open Ocean
Engineering Journal, 6:16-25. DOI: 10.2174/1874835X01306010016.
Carmo, J.S. Antunes do (2015) - Sediment transport induced by
skewness and asymmetry of the wave. In (book) VIII Symposio
sobre el Margen Continental Ibérico Atlántico, 121-124, V. Díaz del Río, P.Bárcenas, L.M. Fernández-Salas, N. López-González, D. Palomino, J.L.Rueda, O.Sánchez-Guillamón e J.T.Vásquez (Editors). Ediciones Sia Graf, Málaga, Spain. Available online at https://www.researchgate.net/
publication/282009789_Sediment_transport_induced_by_skewness_
and_asymmetry_of_the_wave
Clamond, D.; Dutykh, D.; Mitsotakis, D. (2015) - Conservative
modified Serre-Green-Naghdi equations with improved dispersion characteristics, 22 pages. Available online at http://arxiv.org/pdf/
1511.07395.pdf
Dalrymple, R.A. (1988) - Model for refraction of water waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 114(4):423-435. DOI: 10.1061/(ASCE)0733-950X(1988)114:4(423).
Dubarbier, B.; Castelle, B.; Marieu, V.; Ruessink, G. (2015) - Process-
based modeling of cross-shore sandbar behavior. Coastal Engineering, 95:35–50. DOI: 10.1016/j.coastaleng.2014.09.004.
Gardin, B. (2004) - Numerical simulation of the impact of a sandpit on the shore stability, following Migniot and Viguier’s experiments (1979). VIIIèmes Journées Nationales Génie Côtier - Génie Civil, Compiègne, France. Available online at http://wwz.ifremer.fr/gm_eng/content/
download/18041/264573/file/dugardin_GCGC2004_uk.pdf
Green, A.E.; Naghdi, P.M. (1976) - A derivation of equations for wave propagation in water of variable depth. Journal of Fluid Mechanics, 78(2), 237-246. DOI:10.1017/S0022112076002425.
Groot, P.J. (2005) - Modelling the morphological behaviour of sandpits. Influence sediment transport formula and verification of a 1DH model. Report carried out in the framework of the European project SANDPIT, University of Twente, The Netherlands. Available online at
https://www.utwente.nl/ctw/wem/education/afstuderen/
afstudeerverslagen/2005/degroot.pdf
Kirby, J.T. (1984) - A note on linear surface wave-current interaction over slowly varying topography. Journal of Geophysical Research, 89©:745-747. DOI:10.1029/JC089iC01p00745.
Kirby, J.T.; Dalrymple, R.A. (1983) - A parabolic equation for the
combined refraction-diffraction of stokes waves by mildly varying topography. Journal of Fluid Mechanics, 136:435-466.
DOI: 10.1017/S0022112083002232.
Liu, Z.B.; Sun Z.C. (2005) - Two sets of higher-order Boussinesqtype
equations for water waves. Ocean Engineering 32(11-12):1296-1310. DOI: 10.1016/j.oceaneng.2004.12.004.
Long, W.; Kirby, J.T.; Shao, Z. (2008) - A numerical scheme for
morphological bed level calculations. Coastal Engineering,
55(2):167–180. DOI: 10.1016/j.coastaleng.2007.09.009.
Madsen, P.A.; Murray, R.; Sørensen, O.R. (1991) - A new form of the Boussinesq equations with improved linear dispersion characteristics. Coastal Engineering, 15(4):371-388.
DOI: 10.1016/0378-3839(91)90017-B.
Madsen, P.A.; Sørensen, O.R. (1992) - A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry. Coastal Engineering, 18(3-4):183–204.
DOI: 10.1016/0378-3839(92)90019-Q.
Nwogu, O. (1993) - Alternative form of Boussinesq equations for
nearshore wave propagation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 119(6):618-638.
DOI: 10.1062/(ASCE)0733-950X(1993)119.6(618).
Rosa, J.; Gonçalves, D.; Silva, P.A.; Pinheiro, L.M.; Rebêlo, L.; Fortunato, A.; Bertin, X. (2011) - Sand Extraction Evolution Area offshore Vale do Lobo (Algarve, Portugal) - comparison between numerical results and bathymetric data. Journal of Integrated Coastal Zone Management, 11(3):369-377. DOI: 10.5894/rgci284.
Santos, F.J. Seabra (1985) - Contribution a l’ètude des ondes de
gravité bidimensionnelles en eau peu profonde. Ph.D. thesis, Université Scientifique et Médicale et Institut National Polytechnique de Grenoble, France (in French). Unpublished.
Santos, F.J. Seabra (1989) - As aproximações de Wu e de Green &
Naghdi no quadro geral da teoria da água pouco profunda. Simpósio Luso-Brasileiro de Hidráulica e Recursos Hídricos (4º SILUSBA), Lisboa, Portugal, 14-16 June, 209-219 (in Portuguese). Unpublished.
Serre, F. (1953) - Contribution à l’étude des écoulements permanents et variables dans les canaux. La Houille Blanche, 8(6):374–388.
DOI: 10.1051/lhb/1953058.
Simarro, G. (2013) - Energy balance, wave shoaling and group celerity in Boussinesq-type wave propagation models. Ocean Modelling, 72:74-79. DOI: 10.1016/j.ocemod.2013.08.004.
Simarro, G.; Orfila, A.; Mozos, C.M.; Pruneda, R.E. (2015) - On the linear stability of one- and two-layer Boussinesq-type equations for wave propagation over uneven beds. Ocean Engineering, 106:446-457.
DOI: 10.1016/j.oceaneng.2015.07.022.
Walkley, M.A.; Berzins, M. (1999) - A finite element method for the one-dimensional extended Boussinesq equations. International Journal for Numerical Methods in Fluids, 29(2):143-157. DOI: 10.1002/fld.349.
Zhang Y.; Kennedy, A.B.; Panda, N.; Dawson, C.; Westerink, J.J. (2014) – Generating-absorbing sponge layers for phaseresolving wave models. Coastal Engineering, 84:1–9. DOI: 10.1016/j.coastaleng.2013.10.019.
Zheng, J.; Zhang, C.; Demirbilek, Z.; Lin, L. (2014) – Numerical study of sandbar migration under wave-undertow interaction. Journal of Waterway, Port, Coastal, and Ocean Engineering, 140(2):146-159.
DOI: 10.1061/(ASCE)ww.1943-5460.0000231.
86(C11):10938-10954. DOI: 10.1029/JC086iC11p10938.
Beji, S.; Battjes, J.A. (1993) - Experimental investigations of wave
propagation over a bar. Coastal Engineering, 19(1-2):151-162.
DOI: 10.1016/0378-3839(93)90022-Z.
Beji, S.; Nadaoka, K., 1996. A formal derivation and numerical modelling of the improved Boussinesq equations for varying depth, Ocean Engineering, 23(8):691. DOI: 10.1016/0029-8018(96)84408-8.
Berkhoff, J.C.W.; Booij, N.; Radder, A.C. (1982) - Verification of
numerical wave propagation models foe simple harmonic linear water waves. Coastal Engineering, 6:255-279.
DOI: 10.1016/0378-3839(82)90022-9.
Berni, C.; Suarez, L.; Michallet, M.; Barthélemy, E. (2012) – Asymmetry and skewness in the bottom boundary layer: Small scale experiments and numerical model. 33rd International Conference on Coastal Engineering (25), Santander, Spain. Available online at https://icce-ojstamu.tdl.org/icce/index.php/icce/article/view/6637.
Booij, N. (1983) - A note on accuracy of the mild-slope equation.
Coastal Engineering, 7(3):191-203.
DOI: 10.1016/0378-3839(83)90017-0.
Boussinesq, J. (1872) - Théorie des ondes et des remous qui se
propagent le long d’un canal rectangulaire horizontal. Journal of
Mathématiques Pures et Appliquées, 2(17):55-108. Available online at https://eudml.org/doc/234248
Carmo, J.S. Antunes do ; Seabra-Santos, F.J. (1996) - On breaking
waves and wave-current interaction in shallow water: A 2DH finite element model. International Journal for Numerical Methods in Fluids, 22:429-444. DOI: 10.1002/(SICI)1097-0363(19960315)
22:5<429::AID-FLD388>3.0.CO;2-8
Carmo, J.S. Antunes do (2013a) - Boussinesq and Serre type models
with improved linear dispersion characteristics: Applications. Journal of Hydraulic Research, IAHR, 51(6):719-727.
DOI:10.1080/00221686.2013.814090.
Carmo, J.S. Antunes do (2013b) - Extended Serre Equations for
Applications in Intermediate Water Depths. The Open Ocean
Engineering Journal, 6:16-25. DOI: 10.2174/1874835X01306010016.
Carmo, J.S. Antunes do (2015) - Sediment transport induced by
skewness and asymmetry of the wave. In (book) VIII Symposio
sobre el Margen Continental Ibérico Atlántico, 121-124, V. Díaz del Río, P.Bárcenas, L.M. Fernández-Salas, N. López-González, D. Palomino, J.L.Rueda, O.Sánchez-Guillamón e J.T.Vásquez (Editors). Ediciones Sia Graf, Málaga, Spain. Available online at https://www.researchgate.net/
publication/282009789_Sediment_transport_induced_by_skewness_
and_asymmetry_of_the_wave
Clamond, D.; Dutykh, D.; Mitsotakis, D. (2015) - Conservative
modified Serre-Green-Naghdi equations with improved dispersion characteristics, 22 pages. Available online at http://arxiv.org/pdf/
1511.07395.pdf
Dalrymple, R.A. (1988) - Model for refraction of water waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 114(4):423-435. DOI: 10.1061/(ASCE)0733-950X(1988)114:4(423).
Dubarbier, B.; Castelle, B.; Marieu, V.; Ruessink, G. (2015) - Process-
based modeling of cross-shore sandbar behavior. Coastal Engineering, 95:35–50. DOI: 10.1016/j.coastaleng.2014.09.004.
Gardin, B. (2004) - Numerical simulation of the impact of a sandpit on the shore stability, following Migniot and Viguier’s experiments (1979). VIIIèmes Journées Nationales Génie Côtier - Génie Civil, Compiègne, France. Available online at http://wwz.ifremer.fr/gm_eng/content/
download/18041/264573/file/dugardin_GCGC2004_uk.pdf
Green, A.E.; Naghdi, P.M. (1976) - A derivation of equations for wave propagation in water of variable depth. Journal of Fluid Mechanics, 78(2), 237-246. DOI:10.1017/S0022112076002425.
Groot, P.J. (2005) - Modelling the morphological behaviour of sandpits. Influence sediment transport formula and verification of a 1DH model. Report carried out in the framework of the European project SANDPIT, University of Twente, The Netherlands. Available online at
https://www.utwente.nl/ctw/wem/education/afstuderen/
afstudeerverslagen/2005/degroot.pdf
Kirby, J.T. (1984) - A note on linear surface wave-current interaction over slowly varying topography. Journal of Geophysical Research, 89©:745-747. DOI:10.1029/JC089iC01p00745.
Kirby, J.T.; Dalrymple, R.A. (1983) - A parabolic equation for the
combined refraction-diffraction of stokes waves by mildly varying topography. Journal of Fluid Mechanics, 136:435-466.
DOI: 10.1017/S0022112083002232.
Liu, Z.B.; Sun Z.C. (2005) - Two sets of higher-order Boussinesqtype
equations for water waves. Ocean Engineering 32(11-12):1296-1310. DOI: 10.1016/j.oceaneng.2004.12.004.
Long, W.; Kirby, J.T.; Shao, Z. (2008) - A numerical scheme for
morphological bed level calculations. Coastal Engineering,
55(2):167–180. DOI: 10.1016/j.coastaleng.2007.09.009.
Madsen, P.A.; Murray, R.; Sørensen, O.R. (1991) - A new form of the Boussinesq equations with improved linear dispersion characteristics. Coastal Engineering, 15(4):371-388.
DOI: 10.1016/0378-3839(91)90017-B.
Madsen, P.A.; Sørensen, O.R. (1992) - A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry. Coastal Engineering, 18(3-4):183–204.
DOI: 10.1016/0378-3839(92)90019-Q.
Nwogu, O. (1993) - Alternative form of Boussinesq equations for
nearshore wave propagation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 119(6):618-638.
DOI: 10.1062/(ASCE)0733-950X(1993)119.6(618).
Rosa, J.; Gonçalves, D.; Silva, P.A.; Pinheiro, L.M.; Rebêlo, L.; Fortunato, A.; Bertin, X. (2011) - Sand Extraction Evolution Area offshore Vale do Lobo (Algarve, Portugal) - comparison between numerical results and bathymetric data. Journal of Integrated Coastal Zone Management, 11(3):369-377. DOI: 10.5894/rgci284.
Santos, F.J. Seabra (1985) - Contribution a l’ètude des ondes de
gravité bidimensionnelles en eau peu profonde. Ph.D. thesis, Université Scientifique et Médicale et Institut National Polytechnique de Grenoble, France (in French). Unpublished.
Santos, F.J. Seabra (1989) - As aproximações de Wu e de Green &
Naghdi no quadro geral da teoria da água pouco profunda. Simpósio Luso-Brasileiro de Hidráulica e Recursos Hídricos (4º SILUSBA), Lisboa, Portugal, 14-16 June, 209-219 (in Portuguese). Unpublished.
Serre, F. (1953) - Contribution à l’étude des écoulements permanents et variables dans les canaux. La Houille Blanche, 8(6):374–388.
DOI: 10.1051/lhb/1953058.
Simarro, G. (2013) - Energy balance, wave shoaling and group celerity in Boussinesq-type wave propagation models. Ocean Modelling, 72:74-79. DOI: 10.1016/j.ocemod.2013.08.004.
Simarro, G.; Orfila, A.; Mozos, C.M.; Pruneda, R.E. (2015) - On the linear stability of one- and two-layer Boussinesq-type equations for wave propagation over uneven beds. Ocean Engineering, 106:446-457.
DOI: 10.1016/j.oceaneng.2015.07.022.
Walkley, M.A.; Berzins, M. (1999) - A finite element method for the one-dimensional extended Boussinesq equations. International Journal for Numerical Methods in Fluids, 29(2):143-157. DOI: 10.1002/fld.349.
Zhang Y.; Kennedy, A.B.; Panda, N.; Dawson, C.; Westerink, J.J. (2014) – Generating-absorbing sponge layers for phaseresolving wave models. Coastal Engineering, 84:1–9. DOI: 10.1016/j.coastaleng.2013.10.019.
Zheng, J.; Zhang, C.; Demirbilek, Z.; Lin, L. (2014) – Numerical study of sandbar migration under wave-undertow interaction. Journal of Waterway, Port, Coastal, and Ocean Engineering, 140(2):146-159.
DOI: 10.1061/(ASCE)ww.1943-5460.0000231.
em construção