Volume 35, Nº 1 - maio 2014
Download (405KB, PDF) |
- Abstract / Resumo
- References / Bibliografia
- Citations / Citações
DOI:10.5894/rh35n1-2
O
texto deste artigo foi submetido para revisão e possível publicação em
abril de 2014, tendo sido aceite pela Comissão de Editores Científicos
Associados em abril de 2014. Este artigo é parte integrante da Revista
Recursos Hídricos, Vol. 35, Nº 1, 23-35, maio de 2014.
Extensão da teoria de ondas não-lineares até condições de água profunda
Nonlinear wave theory extended to deep water conditions
José S. Antunes do Carmo1
1 - IMAR/Universidade de Coimbra, FCTUC, Departamento de Engenharia Civil /// 3030-788 Coimbra /// jsacarmo@dec.uc.pt
RESUMO
Os modelos numéricos são instrumentos úteis para estudar a propagação
de ondas em meios com diferentes características, desde águas profundas
(ao largo) até condições de água pouco profunda, e investigar a
interação de ondas com batimetrias complexas ou estruturas construídas
em regiões costeiras e estuarinas.
As capacidades de modelos do tipo Boussinesq e as equações Serre, ou de
Green e Naghdi, para reproduzir os processos não lineares de diversas
interações são bem conhecidas. No entanto, estas aproximações clássicas
restringem-se a condições de águas pouco profundas. Desde meados da
década de 90 têm sido desenvolvidas formulações que acrescentam termos
de origem dispersiva, em particular para aproximações do tipo
Boussinesq.
Neste trabalho é apresentada uma formulação das equações clássicas de
Serre com melhores características dispersivas lineares. As equações
são resolvidas numericamente por diferenças finitas, após introdução de
uma variável auxiliar que agrega as derivadas temporais da velocidade
na equação da quantidade de movimento.
A discretização numérica é validada por comparação de resultados com a
solução analítica de Serre para uma onda solitária com a/h0=0.60,
e com a solução de Stokes para águas intermédias. O desempenho do
modelo para propagar ondas até condições de águas profundas
(h/L=0.5) e fundos com declives acentuados é testado através de comparações com dados experimentais disponíveis na literatura.
Palavras-chave: Equações de Serre, características dispersivas, águas profundas, solução numérica, aplicações.
ABSTRACT
Numerical models are useful tools to study the wave propagation in
regions with different characteristics, from deep water (offshore) to
shallow water conditions, and to investigate the interaction of waves
with complex bathymetries or structures constructed in coastal and
estuarine regions.
The ability of Boussinesq-type models and Serre or Green and Naghdi
equations to reproduce the nonlinear processes of different
interactions is well known. However, these models are restricted to
shallow water conditions, and addition of other terms of dispersive
origin has been considered since 90’s, particularly for Boussinesq-type
approximations.
In this work, a new approximation of the classical Serre equations with
improved linear dispersive characteristics is developed and written in
a weak quasi-conservative form by introducing a dependent variable that
aggregates all time derivatives of momentum equation.
The numerical discretization is validated by comparison with the
analytical solution for a highly nonlinear propagating solitary wave
(a/h0=0.60),
and with the Stokes solution for intermediate waters. The model
performance to propagate waves from deep water conditions (h/L=0.5) and
bottoms with large slopes is tested through comparisons with
experimental data available in the literature.
Keywords: Serre equations, dispersive characteristics, depth waters, numerical solution, applications.
Agnon
Y., Madsen P.A. e Schaffer H. (1999). A new approach to high order
Boussinesq models. Journal of Fluid Mech., 399, 319-333.
Antunes
do Carmo J.S. (2013a). Boussinesq and Serre type models with improved
linear dispersion characteristics: Applications. Journal of Hydraulic
Research, IAHR, Volume 51, Number 6, 719-727, doi:10.1080/00221686.2013.814090.
Antunes
do Carmo J.S. (2013b). Extended Serre equations for applications in
intermediate water depths. The Open Ocean Engineering Journal, Bentham
Science Publishers, USA, Volume 6, 16-25, doi: 10.2174/1874835X01306010016.
Antunes do Carmo J.S. (2013c). Applications of Serre and Boussinesq type models with improved linear dispersion characteristics. Congress on Numerical Methods in Engineering, Bilbao, Spain, 25-28 June. In (book) Congreso de Métodos Numéricos en Ingeniería – CMN 2013, 1552-1569, Jesús Mari Blanco, Irene Arias, Alberto Peña, José Miranda
Guedes,
Nuno Silvestre e Miguel Silva (Eds), International Center for Numerical
Methods in Engineering (CIMNE), Barcelona, ISBN 978-84-941531-4-3.
Beji
S. e Battjes J.A. (1993). Experimental investigations of wave
propagation over a bar. Coastal Engeenring., Vol. 19, No. (1,2),
151-162.
Beji S. e Nadaoka K. (1996).
Formal derivation and numerical modelling of the improved Boussinesq
equations for varying depth. Ocean Engineering, 23:691.
Berkhoff
J.C.W., Booij N. e Radder A.C. (1982). Verification of numerical wave
propagation models foe simple harmonic linear water waves. Coastal
Engineering, Vol. 6, 255-279.
Booij N. (1983). A note on accuracy of the mild-slope equation. Coastal Engineering, Vol. 7, 91-203.
Boussinesq
J. (1872). Théorie des ondes et des remous qui se propagent le long
d’un canal rectangulaire horizontal. Journal Math. Pure et Appl., 2(17)
55-108.
Cienfuegos R., Barthélémy E. e
Bonneton P. (2006). A fourth-order compact finite volume scheme for
fully nonlinear and weakly dispersive Boussinesq-type equations. Part
I: Model development and analysis. Int. J. Numer. Meth. Fluids,
51:1217-1253.
Dalrymple R.A. (1988).
Model for refraction of water waves. Journal of Waterway, Port,
Coastal, and Ocean Engineering, ASCE, Vol. 114, No. 4, 423-435.
Dean
R.G. e Dalrymple R.A. (1984). Water wave mechanics for engineers and
scientists. Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632.
ISBN 0-13-946038-1.
Gobbi M.F.G., Kirby
J.T. e Wei. G. (2000). A fully nonlinear Boussinesq model for surface
waves. Part 2. Extension to O(kh)4. Journal of Fluid Mechanics, 405,
181-210.
Kirby J.T. (1984). A note on
linear surface wave-current interaction over slowly varying topography.
Journal of Geophys. Research, Vol. 89, No. C, 745-747
Kirby
J.T. e Dalrymple R.A. (1983). A parabolic equation for the combined
refraction-diffraction of stokes waves by mildly varying topography.
Journal of Fluid Mechanics, Vol. 136, 435-466.
Liu Z.B. e Sun Z.C. (2005). Two sets of higher-order Boussinesq-type equations for water waves. Ocean Engineering, 32 1296-1310.
Lynett
P. e Liu P.L.-F. (2002). Modeling Wave Generation, Evolution, and
Interaction with Depth Integrated, Dispersive Wave Equations COULWAVE
Code Manual. Cornell University Long and Intermediate Wave Modeling
Package.
Madsen P.A. e Schaffer H.A.
(1998). Higher order Boussinesq-type equations for surface gravity
waves - Derivation and analysis. Royal Society of London A, 356, 1-60.
Madsen
P.A. e Sørensen O.R. (1992). A New Form of the Boussineq Equations with
Improved Linear Dispersion Characteristics: 2. A Slowly Varying
Bathymetry. Coastal Engineering, 18:183.
Nwogu
O. (1993). Alternative form of Boussinesq equations for nearshore wave
propagation. Journal of Waterway, Port, Coastal, and Ocean Eng., 119
618-638.
Peregrine D.H. (1967). Long waves on a beach. Journal of Fluid Mechanics, Vol. 27, No. 4, 815-827.
Seabra-Santos
F.J. (1985). Contribution a l’étude des ondes de gravité
bidimensionnelles en eau peu profonde. Tese de doutoramento, Institut
National Polytechnique de Grenoble, France, 338 p.
Seabra-Santos
F.J. (1989). As aproximações de Wu e de Green & Naghdi no quadro
geral da teoria da água pouco profunda. Simpósio Luso-Brasileiro de
Hidráulica e Recursos Hídricos (4º SILUSBA), Lisboa, 14-16 de junho,
209-219.
Serre F. (1953). Contribution
à l’étude des écoulements permanents et variables dans les canaux. La
Houille Blanche 8, 374–388 & 830-872.
Wei
G. e Kirby J T. (1995). A time-dependent numerical code for extended
Boussinesq equations. Journal of Waterway, Port, Coastal and Ocean
Engineering, 121, 251-261.
Wei G., Kirby J.T., Grilli, S.T. e Subramanya R. (1995). A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear, unsteady waves. Journal of Fluid Mechanics, 294, 71-92.