Revista
Recursos Hídricos
DOI:10.5894/rh40n2-cti4
Este artigo é parte integrante da Revista Recursos Hídricos,
Vol. 40, Nº 2, 39-47, dezembro de 2019.
Optimización multi-objeto para la mejora de equidad y fiabilidad en redes de abastecimiento
intermitente
Multi-object optimization for the improvement of equity and
reliability in intermittent supply networks
David Ferras@, 1, Passwell Pepukai Nyahora1,2, Andres Amen3, João Ferreira4 and Mukand Singh Babel2
@ Autor correspondente: joao.cavaleiro.ferreira@tecnico.ulisboa.pt
1 Environmental Engineering and Water Technology, IHE Delft Institute of Water, Delft, 2611 AX, The Netherlands.
2 Water Engineering and Management, Asian Institute of Technology, Bangkok,12120, Thailand.
3 POLICONSTRUC-ALEXER Consortium, Ecuador.
4 CERIS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
RESUMEN
Sistemas de redes en régimen intermitente están sometidos a una serie de problemáticas como distribución desequilibrada, baja fiabilidad y pobre calidad de agua. La toma de decisiones en redes intermitentes es compleja y, a pesar de los limitados recursos naturales y económicos, la provisión del servicio de agua es primordial. Hasta la fecha, poca investigación ha sido dirigida a la mejora de sistemas de abastamiento de agua intermitentes o a su transición a sistemas en régimen continuo. En el presente estudio una herramienta de optimización multi-objeto por medio de un algoritmo genético es desarrollada para dar soporte a la toma de decisiones. Equidad y fiabilidad de la red son maximizadas versus el coste de las actuaciones asociadas. Las actuaciones se han clasificadas en sustitución de tuberías, bombas de elevación y depósitos de distribución. El código implementado es finalmente verificado usando una red sintética.
Palabras clave: Equidad, fiabilidad, abastecimiento intermitente, optimización multi-objeto, algoritmos genéticos.
ABSTRACT
Intermittent network systems are subjected to a series of problems such as unbalanced distribution, low
reliability and poor water quality. Decision making in intermittent networks is complex and, despite the limited natural and
economic resources, the provision of water service is a priority. To date, little research has been focused on the improvement
of intermittent water supply or on the transition to continuous systems.
In the present study, a multi-object optimization tool based on a genetic algorithm is developed to support decision making.
Equity and reliability of the network are maximized versus the cost of the proposed measures. The intervention measures
have been classified in the replacement of pipes, of pumps and of storage tanks. The implemented code is finally verified
using an artificial network.
Agathokleous, A., & Christodoulou, S. (2016). Vulnerability of Urban Water Distribution Networks under Intermittent Water Supply Operations. Water Resources Management, 30(13), 4731-4750. doi:10.1007/s11269-016-1450-3
Ameyaw, E. E., Memon, F. A., & Bicik, J. (2013). Improving equity in intermittent water supply systems. Journal of Water Supply: Research and Technology-AQUA, 62(8). doi:10.2166/aqua.2013.065
Andey, S. P., & Kelkar, P. S. (2007). Performance of water distribution systems during intermittent versus continuous water supply. Journal - American Water Works Association Journal - American Water Works Association, 99(8), 99-106.
Chandapillai, J., Sudheer, K. P., & Saseendran, S. (2012). Design of Water Distribution Network for Equitable Supply. Water Resources Management, 26(2), 391-406. doi:10.1007/s11269-011-9923-x Charalambous, B., & Laspidou, C. (2017). Dealing with the Complex Interrelation of Intermittent Supply and Water Loss: IWA Publishing.
Chiandussi, G., Codegone, M., Ferrero, S., & Varesio, F. E. (2012). Comparison of multi-objective optimization methodologies for engineering applications. Computers & Mathematics with Applications, 63(5), 912-942. doi:10.1016/j.camwa.2011.11.057
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017
Farmani, R., Walters, G., & Savic, D. (2005). Evolutionary multi-objective optimization in water distribution network design. Engineering Optimization, 37(2), 167-183. doi:10.1080/03052150512331303436
Farmani, R., Walters, G., & Savic, D. (2006). Evolutionary Multi-objective optimization of the design and operation of water distribution network: total cost vs. reliability vs. water quality. Journal of Hydroinformatics, 165 -179.
Galaitsi, S., et al. (2016). Intermittent Domestic Water Supply: A Critical Review and Analysis of CausalConsequential Pathways. Water, 8(7). doi:10.3390/w8070274
Gottipati, P. V. K. S. V., & Nanduri, U. V. (2014). Equity in water supply in intermittent water distribution networks. Water and Environment Journal, 28(4), 509-515. doi:10.1111/wej.12065
Iglesias-Rey, P., Mora-Meliá, D., Martinez-Solano, F., & S. Fuertes, V. (2007). Study of sensitivity of the parameters of a genetic algorithm for design of water distribution networks (Vol. 1).
Ilaya-Ayza, A. E., Martins, C., Campbell, E., & Izquierdo, J. (2017). Implementation of DMAs in Intermittent Water Supply Networks Based on Equity Criteria. Water, 9(11). doi:10.3390/w9110851
Ilaya-Ayza, A. E., Martins, C., Campbell, E., & Izquierdo, J. (2018). Gradual transition from intermittent to continuous water supply based on multi-criteria optimization for network sector selection. Journal of Computational and Applied Mathematics, 330, 1016-1029. doi:10.1016/j.cam.2017.04.025
Kaminsky, J., & Kumpel, E. (2018). Dry Pipes: Associations between Utility Performance and Intermittent Piped Water Supply in Low and Middle Income Countries. Water, 10(8). doi:10.3390/w10081032
Kim, J. H., Choi, Y. H., Lee, H. M., & Jung, D. (2017, 1619 April 2017). Development of warm initial solution approaches to improve the quality of Pareto optimal solutions in water distribution network design. Paper presented at the 2017 Seventh International Conference on Information Science and Technology (ICIST).
Klise, K. A., et al. (2017). Water Network Tool for Resilience (WNTR) User Manual, U.S. Environmental Protection Agency Technical Report, EPA/600/R-17/264, 47p.
Marchionni, V., Cabral, M., Amado, C., & Covas, D. (2016). Estimating Water Supply Infrastructure Cost Using Regression Techniques. JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 142(4), 04016003. doi:10.1061/(ASCE)WR.19435452.0000627
Molden, D. J., & Gates, T. K. (1990). Performance Measures for Evaluation of Irrigation-WaterDelivery Systems. Journal of Irrigation and Drainage Engineering, 116(6), 804-823. doi:10.1061/(ASCE)0733-9437(1990)116:6(804)
Prasad, T. D. (2010). Design of Pumped Water Distribution Networks with Storage. JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 136(1), 129-132. doi:10.1061/(ASCE)07339496(2010)136:1(129)
Simukonda, K., Farmani, R., & Butler, D. (2018). Intermittent water supply systems: causal factors, problems and solution options. Urban Water Journal, 1-13. doi:10.1080/1573062x.2018.1483522
Sivakumar, P., Prasad, R. K., & Chandramouli, S. (2015). Uncertainty Analysis of Looped Water Distribution Networks Using Linked EPANET-GA Method. Water Resources Management, 30(1), 331358. doi:10.1007/s11269-015-1165-x
Soltanjalili, M.-J., Bozorg Haddad, O., & Mariño, M. A. (2013). Operating Water Distribution Networks during Water Shortage Conditions Using Hedging and Intermittent Water Supply Concepts. JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 139(6), 644-659. doi:10.1061/(asce)wr.1943-5452.0000315
Todini, E. (2000). Looped water distribution networks design using a resilience index based heuristic approach. Urban Water, 2(2), 115-122. doi:10.1016/S1462-0758(00)00049-2
United Nations. (2015). Sustainable Development. Retrieved from https://sustainabledevelopment.un.org/sdgs
United Nations Department of Economic and Social Affairs Population Division. (2018). World Urbanization Prospects: The 2018 Revision. Retrieved from https://population.un.org/wup/DataQuery/
Vairavamoorthy, K., & Ali, M. (2000). Optimal Design of Water Distribution Systems Using Genetic Algorithms. Computer-Aided Civil and Infrastructure Engineering, 15(5), 374-382. doi:10.1111/08859507.00201
WHO, & UNICEF. (2017). Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. Retrieved from Geneva: https://www.who.int/mediacentre/news/releases/2017/launchversion-report-jmp-water-sanitation-hygiene.pdf
Xu, C., & Goulter, I. C. (1998). Probabilistic Model for Water Distribution Reliability. JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 124(4), 218-228. doi: 10.1061/(ASCE)07339496(1998)124:4(218)