Revista de Gestão Costeira Integrada
Volume 24, Issue 1, June 2024, Pages 41-53
DOI: 10.5894/rgci-n571
* Submission: 11 AGO 2023; Peer review: 20 OCT 2023; Revised: 9 MAY 2024; Accepted: 9 MAY 2024; Available on-line: 21 OCT 2024
Exploring tidal constituent trends: unveiling the impact of the 18.6-year lunar nodal cycle through harmonic analysis and long-term tide gauge records
André de Lima Coelho@ 1, Tiago Zenker Gireli1, Kelly Kawai Venancio2, Patrícia Dalsoglio Garcia2
@ Corresponding author: alimacoelho1@gmail.com
1 School of Civil Engineering, Architecture, and Urban Design, University of Campinas, Rua Saturnino de Brito, 224, Campinas, São Paulo, Brazil.
1 E-mail addresses: zenker@unicamp.br (T.Z. Gireli), kellkawai.v@gmail.com (K.K.Venancio), pdgarcia@unicamp.br (P.D. Garcia)
ABSTRACT
Understanding tidal constituent trends is becoming increasingly important in a world where climate change puts pressure on the tidal regime across the globe. Tidal constituents change constantly, but there is strong evidence that nodal modulation interferes with constituent amplitude values, thus hindering efforts to accurately measure their trends. Therefore, this paper proposes a practical approach to remove the influence of nodal modulation in constituent trend analysis. We collected multiple 18.6-year series of sea level data from tide gauges in Brest (France), Cananeia (Brazil), and Eastport (USA) and performed a harmonic analysis. Our main focus is to assess the interference of the nodal cycle on M2 tidal constituents. Although 19-year series are optimal to minimize this interference, they drastically reduce the number of data sets analyzed. To mitigate this problem, we employed a sliding window approach where each 19-year series starts one year after the previous one. The results of all three surveyed sites show that by employing this approach, the trends of the tidal constituents change significantly compared to what was previously seen with nodal interference. For instance, in Eastport, the analysis indicates that nodal modulation is partially responsible for the apparent reduction of the M2 amplitude tendency slope after 1980, a change that is softened when the effects of this modulation are removed. The reliability of the trends identified in this study suggests that this practical approach can also help future research predict the slope tendency of main tidal constituents.
Keywords: Tides; Nodal cycle; Harmonic analysis; Tidal Constituents; Tide gauge records.
RESUMO
A compreensão das tendências das componentes de maré está se tornando uma pauta relevante, principalmente ao considerar que as mudanças climáticas podem afetar o comportamento das marés ao redor do mundo. As componentes de maré mudam constantemente, mas há fortes evidências de que a modulação nodal interfere nos valores de amplitude das componentes, dificultando assim os esforços para medir com precisão suas tendências. Portanto, o presente estudo propõe uma abordagem prática para remover a influência da modulação nodal na análise de tendências das componentes. Diversas séries de dados de nível do mar de longo período, ou seja, de 18.6 anos, foram coletadas de marégrafos em Brest (França), Cananéia (Brasil) e Eastport (EUA). Com base em tais dados, foram conduzidas diversas análises harmônicas. O principal foco deste estudo é avaliar a interferência do ciclo nodal nas componentes de maré M2. Embora as séries de 19 anos sejam ideais para minimizar essa interferência, elas reduzem drasticamente a quantidade de conjuntos de dados analisados. Para atenuar tal problema, foi empregada uma abordagem de janela móvel na qual cada série de 19 anos começa um ano após o início da série anterior. Os resultados dos três locais estudados mostram que, ao adotar essa abordagem, as tendências das componentes de maré mudam significativamente em comparação ao que foi visto anteriormente com a interferência nodal. Por exemplo, em Eastport, a análise indica que a modulação nodal é parcialmente responsável pela aparente redução da inclinação da tendência de amplitude da componente M2 após 1980, uma mudança que é suavizada quando os efeitos dessa modulação são removidos. A confiabilidade das tendências identificadas neste estudo sugere que essa abordagem prática também poderá ajudar pesquisas futuras na previsão de tendências das principais componentes de maré.
Palavras-chave: Marés; Ciclo nodal; Análise Harmônica; Componentes de Maré; Registros maregráficos.
Almeida, C. D. S., Silva, A. R. L. D., Sznelwar, M., & Mesquita, A. R. D. (2016). Crustal sinking and the sea level at Cananéia, SP, Brazil. Revista Brasileira De Geofísica, 34(1). https://doi.org/10.22564/rbgf.v34i1.781
Arns, A., Dangendorf, S., Jensen, J., Talke, S., Bender, J., & Pattiaratchi, C. (2017). Sea-level rise induced amplification of coastal protection design heights. Scientific Reports, 7(1). https://doi.org/10.1038/srep40171
Bouin, M. N., & Wöppelmann, G. (2010). Land motion estimates from GPS at tide gauges: A geophysical evaluation. Geophysical Journal International, 180(1), 193–209. https://doi.org/10.1111/j.1365-246X.2009.04411.x
Byun, D. S., & Cho, C. W. (2009). Exploring conventional tidal prediction schemes for improved coastal numerical forecast modeling. Ocean Modelling, 28(4), 193–202. https://doi.org/10.1016/j.ocemod.2009.02.001
Caldwell, P. C., Merrifield, M. A., & Thompson, P. R. (2015). Sea level measured by tide gauges from global oceans as part of the Joint Archive for Sea Level (JASL) since 1846. National Oceanic and Atmospheric Administration. https://doi.org/10.7289/v5v40s7w
Cherniawsky, J. Y., Foreman, M. G., Kuh Kang, S., Scharroo, R., & Eert, A. J. (2010). 18.6-year lunar nodal tides from altimeter data. Continental Shelf Research, 30(6), 575–587. https://doi.org/10.1016/j.csr.2009.10.002
Church, J., Gregory, J., White, N., Platten, S., & Mitrovica, J. (2011). Understanding and projecting sea level change. Oceanography, 24(2), 130–143. https://doi.org/10.5670/oceanog.2011.33
Codiga, D. L. (2011). Unified tidal analysis and prediction using the UTide Matlab functions (Technical Report 2011-01). Graduate School of Oceanography, University of Rhode Island, Narragansett, RI. Retrieved from ftp://www.po.gso.uri.edu/pub/downloads/codiga/pubs/2011Codiga-UTide-Report.pdf
Foreman, M.G.G., 1977. Manual for Tidal Heights Analysis and Prediction. Pacific Marine Science Report 77-10, Institute of Ocean Sciences, Patricia Bay, Sidney, B.C., 58 pp. (2004 revision).
Foreman, M. G. G., Cherniawsky, J. Y., & Ballantyne, V. A. (2009). Versatile harmonic tidal analysis: Improvements and applications. Journal of Atmospheric and Oceanic Technology, 26(4), 806–817. https://doi.org/10.1175/2008jtecho615.1
Greenberg, D. A., Blanchard, W., Smith, B., & Barrow, E. (2012). Climate change, mean sea level and high tides in the Bay of Fundy. Atmosphere-Ocean, 50(3), 261–276. https://doi.org/10.1080/07055900.2012.668670
Godin, G. (1972). The Analysis of Tides (1st ed.). Liverpool University Press, Liverpool.
Godin, G. (1986). The Use of Nodal Corrections in the Calculation of Harmonic Constants. International Hydrographic Review, 63(2), 20.
Godin, G., & Gutiérrez, G. (1986). Non-linear effects in the tide of the Bay of Fundy. Continental Shelf Research, 5(3), 379–402. https://doi.org/10.1016/0278-4343(86)90004-x
Guo, Z., Pan, H., Cao, A., & Lv, X. (2018). A harmonic analysis method adapted to capturing slow variations of tidal amplitudes and phases. Continental Shelf Research, 164, 37–44. https://doi.org/10.1016/j.csr.2018.06.005
Haigh, I. D., Eliot, M., & Pattiaratchi, C. (2011). Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels. Journal of Geophysical Research, 116(C6). https://doi.org/10.1029/2010jc006645
Haigh, I. D., Pickering, M. D., Green, J. A. M., Arbic, B. K., Arns, A., Dangendorf, S., Hill, D. F., Horsburgh, K., Howard, T., Idier, D., Jay, D. A., Jänicke, L., Lee, S. B., Müller, M., Schindelegger, M., Talke, S. A., Wilmes, S., & Woodworth, P. L. (2020). The tides they are a-changin’: A comprehensive review of past and future nonastronomical changes in tides, their driving mechanisms, and future implications. Reviews of Geophysics, 58(1). https://doi.org/10.1029/2018rg000636
Harari, J., & de Camargo, R. (2003). Numerical simulation of the tidal propagation in the coastal region of Santos (Brazil, 24°S 46°W). Continental Shelf Research, 23(16), 1597–1613. https://doi.org/10.1016/s0278-4343(03)00143-2
IOC. (2012). Global Sea Level Observing System (GLOSS) Implementation Plan – 2012 (IOC Technical Series No. 100). UNESCO/IOC.
IPCC. (2013). Climate Change 2013: The Physical Science Basis. In T. F. Stocker et al. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Jay, D. A. (2009). Evolution of tidal amplitudes in the eastern Pacific Ocean. Geophysical Research Letters, 36(4). https://doi.org/10.1029/2008gl036185
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Raper, S. C. B., Watterson, I. G., and Z.-C. Z. (2007). Global Climate Projections. In S. Solomon et al. (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Nicholls, R. J. (2010). Impacts of and responses to sea-level rise. In J. A. Church, P. L. Woodworth, T. Aarup, & S. Wilson (Eds.), Understanding Sea-Level Rise and Variability (pp. 17–51). Wiley-Blackwell.
Pan, H., Zheng, Q., & Lv, X. (2019). Temporal changes in the response of the nodal modulation of the M2 tide in the Gulf of Maine. Continental Shelf Research, 186, 13–20. https://doi.org/10.1016/j.csr.2019.07.007
Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8), 929–937. https://doi.org/10.1016/s0098-3004(02)00013-4
Pouvreau, N., Martin Miguez, B., Simon, B., & Wöppelmann, G. (2006). Évolution de l’onde semi-diurne M2 de la marée à Brest de 1846 à 2005. Comptes Rendus Geoscience, 338(11), 802–808. https://doi.org/10.1016/j.crte.2006.07.003
Prado, H. M., Schlindwein, M. N., Murrieta, R. S. S., Nascimento Júnior, D. R. D., Souza, E. P. D., Cunha-Lignon, M., Mahiques, M. M. D., Giannini, P. C. F., & Contente, R. F. (2019). The Valo Grande channel in the Cananéia-Iguape estuary-lagoon complex (SP, Brazil): Environmental history, ecology, and future perspectives. Ambiente & Sociedade, 22. https://doi.org/10.1590/1809-4422asoc0182r2vu19l4td
Pugh, D.T. (1996) Tides, Surges and Mean Sea-Level (Reprinted with Corrections). John Wiley & Sons Ltd., Hoboken.
Ray, R. (2006). Secular changes of the M tide in the Gulf of Maine. Continental Shelf Research, 26(3), 422–427. https://doi.org/10.1016/j.csr.2005.12.005
Ray, R. D. (2009). Secular changes in the solar semidiurnal tide of the western North Atlantic Ocean. Geophysical Research Letters, 36(19). https://doi.org/10.1029/2009gl040217
Shaw, A., & Tsimplis, M. (2010). The 18.6yr nodal modulation in the tides of Southern European coasts. Continental Shelf Research, 30(2), 138–151. https://doi.org/10.1016/j.csr.2009.10.006
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L. P., & Feyen, L. (2018). Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-04692-w
Woodworth, P. (2010). A survey of recent changes in the main components of the ocean tide. Continental Shelf Research, 30(15), 1680–1691. https://doi.org/10.1016/j.csr.2010.07.002
Woodworth, P. L., Melet, A., Marcos, M., Ray, R. D., Wöppelmann, G., Sasaki, Y. N., Cirano, M., Hibbert, A., Huthnance, J. M., Monserrat, S., & Merrifield, M. A. (2019). Forcing factors affecting sea level changes at the coast. Surveys in Geophysics, 40(6), 1351–1397. https://doi.org/10.1007/s10712-019-09531-1
Wöppelmann, G., Pouvreau, N., Coulomb, A., Simon, B., & Woodworth, P. L. (2008). Tide gauge datum continuity at Brest since 1711: France’s longest sea-level record. Geophysical Research Letters, 35(22). https://doi.org/10.1029/2008gl035783
Zetler, B. D., Long, E. E., & Ku, L. F. (2015). Tide Predictions Using Satellite Constituents. The International Hydrographic Review, 62(2). Retrieved from https://journals.lib.unb.ca/index.php/ihr/article/view/23458